全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2002 

南岭东段强过铝质花岗岩中白云母研究

Keywords: 强过铝质花岗岩白云母显微镜电子探针同位素地质年龄特提斯构造域太平洋构造域

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据显微镜下观察和电子探针成分分析,南岭东段赣南和粤北5个强过铝质花岗岩中存在两类白云母,即原生白云母和次生白云母,原生白云母呈自形一半自形,端面清晰,未被其他矿物包裹,低Fe/(FeMg)值(<0.75,原子数比)和富Ti(原子数≥0.05),Na(原子数≥0.10),Mg(原子数≥0.10),Al(原子数5.26),次生白云母一般表现为他形,端面不清晰,也可由其他矿物(如黑云母,斜长石)变化而来,说明它形成于亚固相条件;其成分为高Fe/(FeMg)值和贫Ni,Na,Mg,Al,由此反映了花岗岩残余岩浆的成分特点,因此,多数次生白云母是岩浆后期一后岩浆期的晚世代白云母,或与岩浆体系有关的水热白云母,根据白云母形成条件和形成过程的讨论,以及研究的5个岩体的同位素地质年龄值(337-155Ma),推测赣南和粤北的强过铝质白云母花岗岩很可能是海西一印支运动挤压一逆冲作用使地壳增厚,诱发地壳深熔岩浆上侵结晶形成的,而且这一增厚-深熔-岩浆上侵的过程延续到燕山早期,因此,上述大的时代跨度的强过铝质花岗岩的存在标志着华南是特提斯构造域与太平洋构造域的衔接区。

References

[1]  李亿斗,盛继福,Bel L Le,等.1986.西华山花岗岩下陆壳起源的证据.地质学报,60(3):256~274.
[2]  Abbott R N Jr, Clarke D B. 1979. Hypothetical liquidus relationships in the subsystem A12O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for a(H2O)≤l. Can. Mineral. , 17:549~560.
[3]  Anderson J L, Rowley M C. 1981. Synkinematic intrusion of peralumious and associated metalumious granitic magmas,Whipple Mountains, California. Can. Mineral. , 19: 83~101.
[4]  Banks N G. 1977. A Tertiary igneous-metamorphic complex in southeastern Arizona. Geol. Soc. Am. Abstr. Progr. , 9: 385.
[5]  Barbarin B. 1996. Genesis of the two main types of peraluminous granitoids. Geology, 24: 295~298.
[6]  Borodina N S, Fershtater G B. 1988. Composition and nature of mustcovite in granites. Intern. Geol. Rev. , 30: 375~381.
[7]  Le Frot P. 1981. Manaslu lencoganite: A collision signature of the Himalaya: a model for its genesis and emplacement. J. Geophys.Res. , 86: 10545~10568.
[8]  Li Y D, Sheng J F, Bal L Le, et al. 1986. Evidence for the lower continental crustal source of the Xihuashan granite. Acta Geologica Sinica, 60(3): 256~274 (in Chinese with English abstract).
[9]  Luth W C, Jahns R H, Tuttle O F. 1964. The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. , 69: 759~773.
[10]  Miller C F, Bradfish L J. 1980. An inner cordilleran belt of muscovitebearing plutons. Geology, 8: 412~416.
[11]  Miller C F, Stoddard E F, Bradfish L J, et al. 1981. Composition of plutonic muscovite: Genetic implications. Can. Mineral. , 19:25~34.
[12]  Miller J S, Glazner A F, Crowe D E. 1996. Muscovite-garnet in the Mojave Desert: Relation to crustal structure of the Cretaceous arc. Geology, 24: 335~338.
[13]  Monier G, Mergoil-Daniel J, Labernardiere H. 1984. Generations successives de muscovites et feldspaths potassiques dans les leucogranites du massif de Millevaches (Massif Central francais).Bull Mineral. , 107: 55~68.
[14]  Nelson C A, Sylvester A G. 1971. Wall rock decarbonation and forcible emplacement of Birch Creek pluton, southern White Mountains, California. Geol. Soc. Am. Bull., 82:2891 ~2904.
[15]  Roycroft P D. 1991. Magmatically zoned muscovite from the two-mica granites of Leinster hatholith, southeast Ireland. Geology, 19:437~440.
[16]  Speer J A. 1984. Micas in igneous rocks. In: Bailey S W, ed. Micsa:Reviews in Mineralogy, 13: 299 ~ 349.
[17]  Strong D F, Hanmer S K. 1981. The leucgranites of southern Brittany: origin by faulting, frictional heating, fluid flux and tractional melting. Can. Mineral., 19: 163~176.
[18]  Swanson S E. 1978. Petrology of the Rocklin pluton and associated rocks, western Sierra Nevada. California. Geol. Soc. Amer.Bull. , 89: 679~686.
[19]  Villa I G, Ruggieri G, Puxeddu M. 1997. Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). Eur. J. Mineral. , 9: 563~568.
[20]  Wyllie P J. 1977. Crustal anatexis: An experimental review. Tecton ophysics, 43: 41~71.
[21]  Burnham C W. 1967. Hydrothermal fluid at the magmatic stage. In:Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits,34~74.
[22]  Chorlton L B, Martin R F. 1978. The effect of boron on the granite solidus. Can. Mineral. , 16: 239~244.
[23]  Clarke D B. 1981. The mineralogy of peraluminous granites: a review. Can. Mineral. , 19: 3~17.
[24]  Day H W. 1973. The high temperature stability of muscovite plus quartz. Am. Mineral., 58: 255~262.
[25]  Druguet E, Hutton D H W. 1998. Syntectonic anatexis and magmatism in a mid-crustal transpressional shear zone: an example from the Hercynian rocks of the eastern Pyrenees. J.Structural Geol. , 20: 905~916.
[26]  Guidotti C V. 1978. Muscovite and K-feldspar from two-mica adamellite in northwestern Main: composition and petrogenetic implications. Am. Mineral., 63: 750~753.
[27]  Halliday A N, Stephens W E, Harmon R S. 1981. Isotopic and chemical constraints on the development of peraluminous Caledonian and Acadian granites. Can. Mineral. , 19:205~216.
[28]  Huang W L, Wyllie P J. 1973. Melting relations of relations of muscovite-granite to 35 khars as a model for fusion of metamorphosed subducted oceanic sediments. Contr. Mineral.Petrol. , 45: 215~230.
[29]  Joyce A S. 1973. Chemistry of the minerals of the granitic Murrumbidgee batholith, Australian Capital Territory. Chem.Geol., 11: 271~296.
[30]  Kretz R. 1983. Symbols for rock-forming minerals. Am. Mineral. ,58: 277~279.
[31]  Sylvester A G, Oertel G, Nelson C A, et al. 1978. Papoose Flat pluton: a granitic blister in the Inyo Mountains, California.Geol. Soc. Am. Bull. , 89: 1205~1219.
[32]  Sylvester P J. 1998. Post-collisional strongly peraluminous granites.Lithos. , 45: 29~44.
[33]  Thompson A B. 1974. Calculation of muscovite-paragonite alkali feldspar phase relations. Contr. Mineral. Petrol., 44:173 ~194.
[34]  Velde B. 1965. Phengite nicas: synthesis, stability and natural occurrence. Am. J. Sci. , 263: 886~913.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133