全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2003 

宁芜地区凹山和太山铁矿床中磷灰石Sr同位素特征及意义

Keywords: 锶同位素,磷灰石,岩浆-热液过渡性流体,铁矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

太山铁(磷)矿床和凹山铁矿床中磷灰石~(87)Sr/~(86)Sr值介于0.7071~0.7073,同辉长闪长(玢)岩、龙王山组粗安岩和大王山组安山岩Sr同位素初始比(0.7040~0.7077)基本接近。说明磷灰石由壳幔同熔型中基性岩浆不混溶和分异作用所形成,而磷灰石中熔融包裹体和气液二相包裹体共存表明,磷灰石由矿浆―热液过渡性流体充填、交代作用所形成。

References

[1]  常印佛,刘湘培,吴言昌.1991.长江中下游铜铁成矿带.北京:地质出版社.
[2]  陈上达,刘聪,陈志贵,等.1992.娘娘山碱性火山―侵入岩特征及成岩定量模拟.岩石矿物学杂志,11(4):306~316.
[3]  陈毓川,盛继福,艾永德.1981.梅山铁矿――一个矿浆热液矿床.中国地质科学院院报矿床地质研究所分刊,2(1):26~48.
[4]  李秉伦,谢奕汉.1984.宁芜地区宁芜型铁矿的成因、分类和成矿模式.中国科学(B辑),(1):80~86.
[5]  林新多.1999.岩浆―热液过渡型矿床 武汉:中国地质大学出版社,33~78.
[6]  卢冰,胡受奚,蔺雨时,等.1990.宁芜型铁矿床成因和成矿模式的探讨.矿床地质,9(1):13~24.
[7]  宁芜研究项目编写小组.1978.宁芜玢岩铁矿.北京:地质出版社.
[8]  宋学信,陈毓川,盛继福,等.1981.论火山―浅成矿浆铁矿床.地质学报,55(1):41~54.
[9]  唐永成,吴言昌,储国正,等.1998.安徽沿江地区铜多金属矿床地质.北京:地质出版社,71~85.
[10]  吴思本,徐志刚.1982.以钟九岩体为例试论熔浆成因钠长岩的存在.中国地质科学院矿床地质研究所所刊,(2):15~26.
[11]  张荣华.1979.长江中下游玢岩铁矿围岩蚀变的地球化学分带.地质学报,53(2):137~152.
[12]  中国科学院地球化学研究所.1987.宁芜型铁矿床形成机理.北京:科学出版社,62~76.
[13]  Barton M D, Johnson D A. 1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24(3): 259~262.
[14]  Bookstron A A. 1977. The magnetite deposits of El Romeral, Chile. Econ. Geol., 72:1101~1130.
[15]  徐祥,邢凤鸣.1994.宁芜地区三个辉长岩全岩-矿物Rb-Sr等时线年龄.地质科学,29(3):309-312.
[16]  翟裕生,姚书振,林新多,等.1992.长江中下游地区铁铜(金)成矿规律.北京:地质出版社.
[17]  Chang Y F, Liu X P, Wu Y C. 1991. The copper-iron belt of the Lower and Middle Reachs of the Changjiang River. Beijing: Geolgical Publishing House (in Chinese with English abstract).
[18]  Chen S D, Liu C, Chen Z G, et al. 1992. Geochemical eharacteristics and quantitative modeling of diagenetic process of Niangniangshan alkaline series. Acta Petrologica et Mineralogiga, 11(4):306~316 (in Chinese with English abstract).
[19]  Chen Y C, Sheng J F, Ai; Y D. 1981. Meishan iron deposit――An ore magma-hydrothermal deposit. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, 2(1):26~48 (in Chinese with English abstract).
[20]  Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type. Econ. Geol., 73:478~485.
[21]  Frietsch R, Tuisku P, Martinsson O, et al. 1997. Early Proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoseandia. Ore Geol. Rev., 12:1~34.
[22]  Hilderhand R S. 1986. Kiruna-type deposits: Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwest Canada. Econ. Geol., 81:640~659.
[23]  Institute of Geochemistry, Chinese Academy of Sciences. 1987. Ore-forming mechanism of Ninwu type iron deposits. Beijing: Science Press, 62~76 (in Chinese).
[24]  Ishihera S, Li W, Shibata K, et al. 1986. Characteristics of Cretaceous magmatism and related mineralization of the Nanjing-Wuhu basin, Lower Yangtze area, eastern China. Bulletin of the Geological Survey of Japan, 37(5):207~231.
[25]  Kolker A. 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite(nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Econ. Geol., 77(5): 1146~1158.
[26]  Li B L, Xie Y H. 1984. Origin, classification, and Oreforming model of Ninwu type iron deposits in Ninwu area. Chinese Science (B), (1):80~86 (in Chinese).
[27]  Lin Xinduo. 1999. Magmatic-hydrothermal transitional type deposit. Wuhan: China University of Geoseience Press, 33~78 (in Chinese).
[28]  Lu B, Hu S X, Lin Y S, et al. 1990. A study on origin and oreforming model of Ninwu type iron deposits. Mineral Deposit, 9(1):13~24 (in Chinese with English abstract).
[29]  Nanjing―Wuhu Research Group. 1978. Nanjing―Wuhu porphyrite iron ores. Beijing: Geological Publishing House (in Chinese).
[30]  Ohmoto H, Goldhaber M B. 1997. Sulfur and carbon isotopes. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, 517~611.
[31]  pan Y, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 16:177~242.
[32]  Philpotts A R. 1967. Origin of certain iron-titanium oxide and apatite rocks. Econ. Geol., 62(3): 303~315.
[33]  Song X X, Chen Y C, Sheng J F, et al. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, 55(1):41~54 (in Chinese with English abstract).
[34]  Tang Y C, Wu Y C, Chu G Z, et al. 1998. Geology of copper-gold polymetallic deposits in the along Changjiang area of Anhui province. Beijing: Geological Publishing House, 71~85 (in Chinese with English abstract).
[35]  Wu S B, Xu Z G. 1982. A discussion on the possible origin of Zhongjiu intrusive body, Anhui province――An example of magmatic albitite. Bulletin of the Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (2): 15~26 (in Chinese with English abstract).
[36]  Xu X, Xing F M. 1994. Rubidium and strontium dating of the whole rocks and minerals of three gabbros in Ninwu region. Scientia Geologica Sinica, 29(3): 309~312 (in Chinese with English abstract).
[37]  Zhai Y S, Yao S Z, Lin X D, et al. 1992. Fe-Cu(Au) metallogeny of the Middle―Lower Changjiang region. Beijing: Geological Publishing House (in Chinese).
[38]  Zhang R H. 1979. On geochemical zoning of the altered country rock of the porphyrite iron ore in the middle―lower Changjiang Valley. Acta Geologica Sinica, 53(2):137~152 (in Chinese with English abstract).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133