全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2004 

高放废物深地质处置库预选场址的古温度环境

Keywords: 高放废物流体包裹体预选场古温度同位素地球化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

填隙矿物的流体包裹体研究与矿物的同位素地球化学研究可较好地揭示高放废物深地质处置库预选场址的深部热环境及古地下水热历史。中国高放废物深地质处置库第一个预选场深部花岗岩内填隙矿物的同位素、矿物学以及流体包裹体研究结果显示,甘肃北山地区花岗岩深部至少存在两种环境:浅部花岗岩(0~150m)填隙方解石的δ^18O=-18.2‰~-15.8‰(PDB),δ^13C=-9.5‰~-8.4‰(PDB),包裹体的均一温度(th)为140~160℃,包裹体的冰点温度为-2.5~-1.5℃,地下水可能以大气降水成因为主,且可能混合了盆地卤水并与花岗岩反应,形成温度、盐度(2%~5%,NaCleq)均较低的地下水;在350~550m区段内(深部花岗岩),其δ^18O值为-32.6‰~-17.6‰(PDB),δ^13C值为-10.5‰~-6.2‰(PDB),流体包裹体的均一温度较其上部的稍高,为160~190℃,而其冰点温度则较低,为-4~-3.2℃(盐度5%~8%,NaCleq),地下水类型为大气降水与盆地古卤水的混合,以大气降水为主。石英的氧同位素组成和计算的古地下水氧同位素组成则进一步表明,花岗岩深部(350~550m)也存在两种温度环境:较低温度(140~160℃)、较高盐度(5.5%~8%,NaCleq)的地下水;较高温度(220~240℃)、较低盐度(3%~5.5%,NaCleq)的地下水,其地下水类型为大气降水和与花岗岩平衡的卤水。

References

[1]  Bottina Y. 1969. Calculated fractionation fractors between carbon and hydrogen isotope exchange in the system calcite-carbon dioxidegraphite-methane-hydrogen-water vapor. Geochimica et Cosmochimica Acta, 33: 49~64.
[2]  Clauer N, Frape S K, Fritz B. 1989. Calcite veins of the Stripa granite (Sweden) as records of the origin of the groundwaters and their interactions with the granitic body. Geochimi. et Cosmochimi.Acta, 53: 1777~1781.
[3]  郭永海,杨天笑,刘淑芬.2001.高放废物处置库甘肃北山预选区水文地质特征研究.铀矿地质.17(3):184~189.
[4]  卢焕章,郭迪江.2000.流体包裹体研究的进展和方向.地质论评,46(4):385~392.
[5]  罗兴章.2002.中国高放废物处置库北山预选场的地球化学研究.南京大学博士学位论文.
[6]  罗兴章,闵茂中,郑正,等.2004.高放废物深地质处置库预选场址深部环境的同位素地球化学.地质学报,78(5).
[7]  闵茂中.1998.放射性废物处置原理.北京:原子能出版社.
[8]  沈渭洲.1997.同位素地质学教程.北京:原子能出版社.
[9]  章新平,姚檀栋.1998.我国降水中18O的分布特点.地理学报,53:356~363.
[10]  Badonar R J. 1993. Revised equation and table for determining freezing point depression of H2O-NaCl solution. Geochimica et Cosmochimica Acta, 57: 683~684.
[11]  Blyth A, Frape S, Blomqvist R, Nissinen P. 2000. Assessing the past thermal and chemical history of fluids in crystalline rock by combining fluid inclusion and isotopic investigations of fracture calcite. Applied Geochemistry, 15:1417 ~ 1437.
[12]  Davis D W, Lowensten T K, Spencer R J. 1990. Melting behaviour of fluid inclusions in laboratory--grown halite crystals in the system NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O,and NaCl-CaCl2-H2O. Geochim, Gosmochim. Acta, 54:591~601.
[13]  Ellis A J. 1959. The solubility of calcite in carbon-dioxide solutions.Americal J. of Science, 257: 354~365.
[14]  Ellis A J. 1963. The solubility of calcite in sodium chloride solutions in high temperatures. American J. of Sciences, 261: 259~267.
[15]  Fyfe W S. 1999. Nuclear waste isolation: an urgent international responsibility. Engineering Geology, 52:159~161.
[16]  Guo Yonghai, Yang Tianxiao, Liu Shufen. 2001. Hydrogeological characteristics of Beishan preselected area, Gansu Province for high-level radioactive waste repository in China. Uranium Geology, 17(3): 184~189 (in Chinese with English abstract).
[17]  Juhasz A, Toth T M, Ramseyer K, Matter A. 2002. Connected fluid evolution in fractured crystalline basement and overlying sediments, Pannonian Basin, SE Hungary. Chemical Geology,182: 91~120.
[18]  Lu Huanzhang, Guo Dijiang. 2000. Progress and trends of researches on fluid inclusions. Geological Review, 46 (4): 385 ~ 392 (in Chinese with English abstract).
[19]  Luo Xingzhang. 2002. Geochemistry of granite from the pre-selected site for high-level radioactive waste repository of China. Nanjing University Doctorial Thesis (in Chinese).
[20]  Luo Xingzhang, Min Maozhong, Zheng Zheng, et. al. 2004. Isotopic geochemistry of the pre-selected site for high-level radioactive waste deep geological repository. Acta Geologica Sinica,78(5) (in Chinese with English abstract).
[21]  Min Maozhong. 1998. Principle of radiowastes disposal. Beijing:Atomic Energy Press (in Chinese).
[22]  Neymark L A, Paces J B. 2000. Consequences of slow growth for 230Th/U dating of Quaternary opals, Yucca Mountain, NV,USA. Chemical Geology, 164: 143~160.
[23]  Parry W T. 1998. Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture scaling minerals.Tectonophysics, 290: 1~26.
[24]  Potter R W. 1977. Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. USGS J. Research, 5: 603~607.
[25]  Shen Weizhou. 1997. Isotope Geology. Beijing: Atomic Energy Press (in Chinese).
[26]  Shiro Y, Sakai H. 1972. Calculation of the reduced partition function ratios of α-, β-quartzes and calcite. Bull. Chem. Soc. Jpn. ,45:2355~2359.
[27]  Stumm W, Morgan J J. 1996. Aquatic chemistry. New York:WileyInterscience.
[28]  Taylor B E. 1987. Stable isotope geochemistry of ore-forming fluids.In: Kyser T K, ed. Short Course in Stable Isotope Geochemistry of Low Temperature Fluids. Mineral. Assoc. Canada.
[29]  Tullborg E L, Landstrom O, Wallin B. 1999. Low-temperature trace element mobility influenced by microbial activity-indications from fracture calcite and pyrite in crystalline basement. Chemical Geology, 157(3/4): 199~218.
[30]  Wallin B, Peterman Z. 1999. Calcite fracture fillings as indicatiors of paleohydrology at Laxemar at the Aspo Hard Rock Laboratory,southern Sweden. Applied Geochemistry, 14: 953~962.
[31]  Zhang Xinping, Yao Tandong. 1998. Distribution of δ 18 O in precipitation of China. Acta Geographica Sinica, 53: 356~ 363 (in Chinese with English abstract).
[32]  核工业北京地质研究院.2001.军工高放废物地质处置前期工程之一--甘肃北山预选区深部地质环境初步研究.中国国防科学技术报告(内部资料).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133