Banfield J F, Navrotsky A. 2001. Nanoparticles and the environment.Review in Mineralogy, Volume 44.
[2]
Barker W W, Welch S A, Chu S, Banfield J F. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogist, 83: 1551 ~ 1563.
[3]
Boquet E, Bordonat A, et al. 1973. Production of calcite crystals by soil bacteria is a general phenomenon. Nature, 246: 527~528.
[4]
Buczynski C, Chafetz H S. 1991. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. Journal Sedimentary Petrology, 61(1) :226~233.
[5]
Calvet F. 1982. Constructive micrite envelope developed in vadose continental environment, in Pleistocene eolianites of Mallorca.Acta Geology Hispan, 19: 169~ 178.
[6]
Chafetz H S. 1986. Marine peloids: a product of bacterially induced precipitation of calcite. Journal Sedimentary Petrology, 56(4):812~817.
[7]
Dove P M, Hochella M F J. 1993. Calcite precipitation mechanisms and inhibition by orthophosphate-in situ observations by scanning force microscopy. Geochimic Cosmochimica Acta, 57(3): 705~714.
[8]
Ehrlich H L. 1996. How microbes influence mineral growth and dissolution. Chemical Geology, 132(1): 5~9.
[9]
Folk R. 1999. Nanobacteria and the precipitation of carbonate in unusual environments. Sedimentary Geology, 126(1): 47~55.
[10]
Frankes L A, Sun J Z. 1994. A carbon isotope record of the upper Chinese loess sequence estimates o fpalnt types during stadials and intersadails. Palaeogeography, Palaeoecology, Palaeoclimate,108: 183~189.
[11]
Glasauer S, Langley S, Beveridge T J. 2002. Intracellular Iron Minerals in a Dissimilatory Iron-Reducing Bacterium. Science,295: 117~119.
[12]
Gu Z Y, Liu R M, Liu Y. 1992. Relationship of carbonate stable isotope components and paleoenvironment in loess-paleosol sequences. In: Liu D S, An Z S, eds. Globe Change and Quaternary Geology of Loess. Volume 3, Beijing: Science Press,55~61 (in Chinese).
[13]
Han J M, Jiang W Y, Lu H Y, et al. 1995. Study on carbon and oxygen stable isotope (Ⅱ) : oxygen and paleoclimate significances.Quaternary Sciences, 16(2): 367~375 (in Chinese).
[14]
Hazen R M, Filley T R, Goodfriend G A. 2001. Selective adsorption of L-and D-amino acids on calcite: implications for biochemical homochirality. Proceedings of the National Academy of Science of the United States of America, 98: 5487~5490.
[15]
House W A. 1987. Inhibition of calcite crystal growth by inorganic phosphate. Journal Colloid Interface Science, 119: 507~ 511.
[16]
Lakshminarayanan R, Kini R M, Valiyaveettil S. 2002. Investigation of the role of ansocalcin in the biomineralization in goose eggshell matrix. Proceedings of the National Academy of Science of the United States of America, 99: 5155~5159.
[17]
Liosy C, Verecchia E P, Dufour P. 1999. Microbial origin for pedgenic micrite associated with a carbonate palesol (Champagne,France). Sedimentary Geology, 126: 193 ~ 204.
[18]
Newman D K, Banfield J F. 2002. Gemicrobiology: how molecularscale interaction underpin biogeochemical systems. Science, 296:1071~1077.
[19]
Phillips S E, Self P G. 1987. Morphology, crystallograpgy and origin of needle-fibre calcite in Quaternary pedogenic calcretes of South Australia. Australia Journal of Soil Research, 25: 429~444.
[20]
Pouget G, Rambaud D. 1980. Quelques types de cristallisation de calcite dans les sols a\' croute calcite (steppes alge\'riennes).Apport de la microscopie e\'letronique. In: CristallisationDe\'formation-Dissolution des Carbonates. University Bordeaux Ⅲ, Institut de Ge\'odynamique, Ed. France, 371~380.
Sheng X F, Chen J, Yang J D, Ji J F, Chen Y. 2002. Carbon and oxygen isotope composition of carbonate in different grain size from loess-paleosol sequences, Chnia. Geochemistry, 31 (2): 105~112 (in Chinses with English abstract).
[23]
Teng H H, Dove P M. 1997. Surface site-specific interaction of aspartate with calcite during dissolution: implications for biomineralization. American Mineralogist, 82: 878~887.
[24]
Teng H H, Dove P M, Orme C A, De Yoreo J J. 1998.Thermodynamics of calcite growth: baseline for understanding biomineral formation. Science, 282: 724~727.
[25]
Verges V, Madon M, Bruand A, Bocquier G. 1982. Morphologie et cristallogene\'se de microcristaux, superge\'nes de calcite en aiguilles. Bulletin Mineralogy, 105:351~356.
[26]
Verrecchia E P, Verrecchia K E. 1994. Needle fiber calcite: a critical review and a proposed classification. Journal of Sedimentary Resaerch, A4: 650~664.
[27]
Wang Huan, Wang Hejing, Chen Tao, Zhang Zuqing. 2005. Study of two-dimensional nanometer illite in Jixian County, Tianjin City.Geological Riview, 51 (3): 319 ~ 324 (in Chinses with English abstract).
[28]
Wang Y F, Bryan C, Xu H F, Pohl P, Yang Y, Brinker J. 2002.Interface chemistry of nanostructuted materials: ion adorption on mesoporous alimina. Journal of Colloid and Interface Science, 254(1): 23~30.
[29]
Warren L A, Ferris F G. 1998. Continuum between sorption and precipitation of Fe (Ⅲ) on microbial surfaces. Envir. Sci.Technol. , 32: 2331~2337.
[30]
Warren L A, Maurice P A, Parmar N, Ferris F G. 2001. Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting Calcite Precipitation and for Solid-Phase Capture of Inorganic Contaminants. Geomicrobiology Journal, 18: 93~115.
[31]
Xu H F, Wang Y F. 2000. Crystallization sequence and microstructure evolution of Synroc samples crystallized from CaZrTi2O7 melts. Journal of Nuclear Materials, 279: 100~106.
[32]
Zhang L D, Mu J M. 2001. Nanometer Materials and Nanometer Structure. Beijing: Science Press, 1~525 (in Chinese).
[33]
Zhang S H, Wang Y, Chen C Y. 1987. Study on the stable isotopes in carbonates in Luochuan loess section: Applicability of the Ca nodules as paleoclimate indicators. In: Liu D S, ed. Aspects of Loess Research. Beijing: China Ocean Press, 283~290.
[34]
Zhou Jian, Wang Hejin. 2002. Diagenetic zone, anchizone and phyllosilicates in one-dimensional Nanometer site. Geological Review, 48 (4): 361 ~ 364 (in Chinese with English abstract ).
Andreae M O, Crutzen P J. 1997. Atmospheric aerosols:biogeochemical sources and role in atmospheric chemistry.Science, 276: 1052~1058.
[45]
Archibald D D, Mann S. 1993. Template mineralization of self assembled anisotropic lipid microstructures. Nature, 364: 430~433.
[46]
Banfield J F, Nealson K H. 1998. Geomicrobiology: interaction between microbes and minerals. Review in Mineralogy and Gechemistry, Volume 35.
[47]
Banfield J F, Welch S A, Zhang H Z. 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 289:751 ~754.
[48]
Chen J, Qiu G, Yang J D. 1997. Sr isotopic composition of loess carbonate and identification of primary and secondary carbonates.Progress in Natural Sciences, 7 (5): 590~593.
[49]
Chen T H, Xu H F, Ji J F, et al. 2003. Formation mechanism of ferromagnetic minerals in loess of China: TEM investigation.Chinese Science Bulletin, 48(20): 2259~2266.
[50]
Cisar J O, Xu D Q, Thompson J, Swaim W, Hu L, Kopecko D J.2000. An alternative interpretation of nanobacteria-induced biomineralization. Proc. Natl. Acad. Sci. USA, 97(21): 11511~11515.
[51]
Ding Z H. 1999. Mineralogy up against difficulty and chances:revelation of nanometer materials sciences to mineralogy. Acta Mineralogica Sinica, 19 (3): 379 ~ 384 (in Chinese withy English abstract).
[52]
Southam G, Donald R. 1999. A structural comparison of bacterial microfossils vs. \'nanobacteria\' and nanofossils. Earth-Science Reviews, 48: 251~264.
[53]
Stock F S, Galinat J K, Bang S S. 1999. Microbial precipitation of CaCO3. Soil Biology and Biochemistry, 31:1563~1571