全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2006 

铜在坡缕石中的吸附位置和吸附机理研究

Keywords: 坡缕石铜吸附位置XPSFTIRESR

Full-Text   Cite this paper   Add to My Lib

Abstract:

对四个吸附铜的坡缕石的解吸附实验研究表明,被解吸附的铜来自于坡缕石的表面和纤维状晶体的网状空隙。吸附铜的坡缕石的X射线光电子能谱(XPS)上出现了932.5eV和933.7eV的光电子峰,表明坡缕石表面的铜以Cu^+和Cu^2+的形式存在;傅立叶变换红外吸收光谱(FTIR)上八面体离子的吸收峰出现规律性偏移,其中Mg3OH和Al2□OH吸收峰向高频方向移动了3~5cm^-1,部分铜离子进入到坡缕石的晶体结构的通道中;电子顺磁共振谱上(ESR)出现了g=2.34、2.12、2.08和2.05等4个信号:表明铜离子位于H^+难以到达的位置。吸附铜的坡缕石的矿物学研究及其解吸附实验的结果均表明铜在坡缕石中以3种形式存在:①以Cu^+和Cu^2+的形式吸附在坡缕石纤维的表面,与坡缕石表面的悬空氧成键;②以ECu(H2O)4]^2+的形式存在于坡缕石的晶体结构的微空腔中(通道);③以Cu^2+的形式存在于坡缕石晶体结构中的硅氧四面体六元环的底部或八面体位。

References

[1]  Farquhar M L,Charnock J M,England K E R,Vaughan D J.1996.Adsorption of Cu(II) on the (001) plane of mica:a REFLEXAFS and XPS study.Journal of Colloid and Interface Science,177:561~567.
[2]  Garcia-Sanchez A,Alastuey A,Querol X.1999.Heavy metal adsorption by different minerals application to the remediation of polluted soils.The Science of the Total Environment,242:179~188.
[3]  Gier S,Johns W D.2000.Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy.Applied Clay Science,16:289~299.
[4]  He H P,Guo J G,Xie X D,Peng J L.2001.Location and migration of cations in Cu2+-adsorbed montmorillonite.Environment International,26:347~352.
[5]  Klein J C,Li C P,Hercules D M,Black J F.1984.Decomposition of copper compounds in X-ray photoelectron spectrometers.Applied spectroscopy,38(5):729~734.
[6]  Koppelman M H,Dillard J G.1977.A study of the adsorption of Ni II and Cu II by clay minerals.Clays and Clay Mineral,25:457~462.
[7]  蔡元峰,薛纪越.2005.富镁和贫镁坡缕石及其酸浸蚀产物的红外吸收光谱研究.地质论评,51(1):92~99.
[8]  陈天虎.2000.凹凸棒粘土吸附废水中污染物机理探讨.高校地质学报,6(2):265~270.
[9]  陈天虎.凌丽华,张国生,等.1995.凹凸棒粘土处理印染废水研究.环境污染与防治,17(1):24-26.
[10]  袁旭音,陈骏,吕宝源,等.2003.太湖沉积物微量元素的特征和变化:自然与人类活动的影响.地质论评,49(5):552~560.
[11]  闻辂.1989.矿物红外光谱学.重庆大学出版社 (第一版),89~104.
[12]  Ahlrichs J L,Serna C,Serratosa J M.1975.Structure hydroxyls in sepiolites.Clays and Clay Mineral,23:119~124.
[13]  alvarez-Ayuso E,Garcia-Sanchez A.2003.Palygorskite as a feasible amendment to stabilize heavy metal polluted soils.Environmental Pollution,125:337~344.
[14]  Bahranowski K,Dula R,Lambanowska M,Serwicka E M.1996.ESR study of Cu centers supported on Al-,Ti-,and Zr-pillared montmorillonite clays.Applied Spectroscopy,50:1439~1445.
[15]  Barrer R M,Mackenzie N,MacLeod D M.1954.Sorption by attapulgite.The Journal of Physical Chemistry,58:560~572.
[16]  Clementz D M,Pinnavaia T J,Mortland M M.1973.Stereochemistry of hydrated copper (II) ions on the interlamellar surface of layer silicates:an electron spin resonance study.The Journal of Physical Chemistry,77(2):196~200.
[17]  Heller-Kallai L,Rozenson I.1981.Mssbauer studies of palygorskite and some aspects of palygorskite mineralogy.Clays and Clay Minerals,29(3):226~232.
[18]  Heller-Kallai L,Mosser C.1995.Migration of Cu ions in Cu montmorillonite heated with and without alkali halides.Clays and Clay Minerals,43:738~743.
[19]  McBride M B,Martinez C E.2000.Copper phytotoxicity in a contaminated soil:remediation tests with adsorptive materials.Environmental Science and Technology,34:4386~4391.
[20]  McIntyre N S,Sunder S,Shoesmith D W,Stanchell F W.1981.Chemical information from XPS-applications to the analysis of elctrode surface.Journal of Vacuum Science and Technology,18:714~721.
[21]  Mosser C,Michot L J,Villieras F,Romeo M.1997.Migration of cations in copper (II) exchanged Montmorillonite and laponite upon heating.Clays and Clay Minerals,45:789~802.
[22]  Moulder J F,Stickle W F,Sobol P E,Bomben K D.1995.Handbook of X-ray photoelectron.Perkin-Elmer Corporation,EdenPraire M.
[23]  Strens R G J.1974.The common chain,ribbon,and ring silicates.In:Farmer V C,ed.The Infrared Spetra of Minerals.Monograph 4,London:Mineralogical Society,305.0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133