全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2001 

两花岗岩体接触带铀系核素迁移的初步模拟

Keywords: 铀系核素迁移高放废物处置花岗岩模拟生物圈裂隙充填物

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着世界各国大力发展核电,放射性废料的安全处置已成为当今研究热点和前沿学科。高放废物深地质处置的安全性主要取决于处置库内放射性核素向生物圈的迁移程度。在侵入岩中,放射性核素主要是通过地下水沿岩石孔隙从处置库向生物圈迁移的。为了理解放射性核素在花岗岩体接触带的迁移行为,本文根据两花岗岩体接触带中样品的铀系核素放射性活度比值(^234U/^238U,^230Th/^234U,^226Ra/^230Th,^230Th/^238U),利用α-反冲(弹射)作用引起的放射性不平衡理论,计算了铀系核素子体^234U,^230Th,^226Ra在后期地下水的作用下在花岗岩体接触带及其裂隙内的迁出率、迁入率、并进行了质量平衡的计算。结果表明,经α-反冲作用进入流体的核素的迁出率要远大于因核素自然衰变的消亡率;裂隙充填物及裂隙能阻滞大量核素的迁移,其沉淀核素来自接触带花岗岩;花岗岩能强烈阻滞核素的迁移,可作为阻止放射性核素从核废料地下处置库向外迁移的有利天然屏障。

References

[1]  Lathan A G, Schwarcz H P. 1987. On the possibility of determining rates of removal of uranium from crystalline igneous rocks using U -series disequilibria. 1-A U leach model and its applicability to whole rock data. Applied Geochemistry, 2:55~65.
[2]  Lathan A G, Schwarcz H P. 1989. Review of the modeling of radionuclide transport from U-series disequilibria and of its use in assessing the safe disposal of nuclear waste in crystalline rock. Applied Geochemistry, 4: 527~537.
[3]  Yang T X, Wang Y G, Yao L H, Xie Y M, Zhang Y X. Xiu B L. 1991. The Transporting Model of Nuclide in Fractured Rock Media and its Operator Splitting Upwind and Balance. Journal of Changchun University of Earth Science, 21 (3): 349 ~ 353 (in Chinese with English abstract).
[4]  李春江.杨天行.1998.花岗岩体单裂隙中核素迁移数学模型,--连续注入实验解析模型.核化学与放射化学,20(4):221~22 7.
[5]  威瑟斯庞P A.1999.世界放射性废物地质处置.王驹,张铁岭,郑华铃,郭永海译北京:原子能出版社.
[6]  杨天行,王运国,姚磊华,谢运棉,张永兴,修炳林.1991.裂隙岩石介质中核素迁移的模型及其算子分裂、迎风、均衡格式.长春地质学院学报,2l(3):349~358.
[7]  Alexander W R.Scott R D. Mckenzie A B, Mckinley T G. 1990.Natural analogue studies in crystalline rock: The influence of water bearing fracture on radionuclides immobilization in a granitic rock repository. National genossenschaft fur die Logering radioacdver Abfalle Switzerland, NAGRA NTB, 89~08.
[8]  Frolich K. Gellermann R. 1987. On the potential use of uranium isotopes for groundwater dating. Ghemical Geology, 65: 67~ 77.
[9]  Go~ian C, Lever D A. 1992. Alligator rivers analogue project (Final Report ). V. 14. Radionuclide Transport, Australia. An OECD/NEA International Project Managed By: Australian Nuclear Science and Technology Organisation.
[10]  Criffault L Y. Gascoyne M, Kanineni C, Kerrich R. Vandergraaf T T. 1993. Actinide and rare earth element characteristics of deep fracture zones in the Lac du Bonnet granitic batholitb, Manitoba, Canada. Geochim. et Cosmochim. Acta, 37: 1181 ~ 1202.
[11]  IAEA Report. 1999. Use of Natural Analogues to Support Radionuclide Transport Models for Deep Geological Repositories for Long Live Radioactive Wastes. IAEA TECDOC-1109.IAEA, Vienna.
[12]  Ivnovicb M. Frolich K, Hendry M J. 1991. Uraniurn series radionuclides in fluids and solids, Milk River aquifer. Alberta,Canada. Applied Geochemistry, 6: 405~418.
[13]  Li C J, Yang T X. 1998. A mathematical model for radionuclide transport in single fractured granite. I. Analytical solution for a continuous injection experiment. Journal of Nuclear and Radiochemistry, 20 (4): 221 ~ 227 (in Chinese with English abstract ).
[14]  LuoX Z, Min M Z, LiXG, ZhangG H, YangZ, Zhai LY. 1999.Migration of Some Elements and Radionuclides across a Granite Granite Contact Zone: A Natural Analogue for Safe Disposal of High-Level Radwastes. Acta Geologica Sinica(English Edition),73(4) :418~428.
[15]  Pearson F J, Noronha C J, Andrews R W. 1983. Mathematical modeling of the distribution of natural 14C, 234U and 238U in regional groundwater system. Radiocarbon, 25 ( 2 ): 291 ~ 300.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133