全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2001 

高硫煤中硫的地质演化模式――以内蒙古乌达矿区为例

Keywords: 地质演化模式高硫煤硫同位素乌达矿区内蒙古有机硫黄铁矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

以内蒙古乌达矿区为例,通过对高硫煤9煤层中黄铁矿和有机硫同位素的测定(有机硫同位素δ^34S=-12.3‰-5.8‰,黄铁矿硫同位素δ^34S=-18.7‰-1.1‰),结合煤岩学特征的综合分析以及黄铁矿化菌落和蓝藻胶壳的发现,提出了庙充煤中硫的党政军化模式,认为高硫煤中主要来源的硫的同位素由于硫酸盐的异化细菌还原作用导致大规模分馏,使之趋于负值,在高硫煤形成过程中,黄铁矿和有机硫表现出形成初期Fe^2和有机质对硫离子的争夺性、形成过程中在剖面上的层次性、阶段性和时间上的相向性,层次性和阶段性表现为沼泽体系对SO4^2-和H2S的开放程度及黄铁矿的形成对^32SO4^2-的过滤性,相向性表现为泥炭聚积初期和晚期,Fe^2和SO4^2-对高硫煤形成做出了贡献,具有剖面上的对称特点。

References

[1]  彭苏萍,张建华.1996.乌达矿区含煤地层沉积环境及其对矿山开采的影响.北京:煤炭工业出版社,52~78.
[2]  Ceil C B, Randal A H, Stanton R W. 1981. A geochemical model for origin of low-ashand low-sulfur coal. In: Geological Society of America, Cincinnatti, Field Trip, (4): 175~177.
[3]  Chou C L. 1990. Geochemistry of sulfur in coal. In: Orr W L, White C M, ed.Geochemistry of Sulfur in Fossil Fuels, Chap. 2,American Chemical Society Symposium,Series 429,30~52.
[4]  Chou C L. 1997. Geologic factors affecting the abundance, distribution, andspeciation of sulfur in coals. In: Yang Q, ed. Proceedings of the 30th InternationalGeological Congress, Vol. 18, Part B, Geology of Fossil Fuels-Coal. VSP, Utretht, TheNether lands, 47~57.
[5]  Smith J W, Gould K W, Rigby D. 1981. The stable isotope geochemistry of Australiancoals. Organic Geochemistry, (3): 111~131.
[6]  Stach E, Mackowsky M, Teichmüller M, Taylor G H, Chandra D,TeichmüillerR. 1982. Stach\'s Textbook of Coal Petrology. Borntraeger, Stuttgart, 12~89.
[7]  Teichmüller M. 1989. The genesis of coal from the viewpoint of coalpetrology. Int. J. Coal Geol., 12: 1~87.
[8]  代世峰,任德贻,唐跃刚,侯慧敏,毛鹤龄.1998.乌达矿区主采煤层泥炭沼的演化及特征.煤炭学报,23(1):7-11.
[9]  代世峰,任德贻,唐跃刚,艾天杰,周强,马凤学,李宝春.1999.乌达矿区高硫煤中菌藻类体的发现及意义.中国矿业大学学报,28(1):57~60.
[10]  雷加锦,濮英英,任德贻.1995.贵定超高有机硫煤中的细菌体及其意义.岩石学报,11(4):456~460.
[11]  Dai Shifeng, Ren Deyi, Tang Yuegang, Hou Huimin, Mao Heling.1998. The evolution andcharacteristic of peat swamp in Wuda Coalfield. Journal of China Coal Society, 23 (1):7~11(in Chinese with English abstract).
[12]  Dai Shifeng, Ren Deyi, Tang Yuegang, Ai Tianjie, Zhou Qiang, Ma Fengxue, LiBaochun. 1999. Findings and significance of algae and bacteria in high-sulfur coal seamsin Wuda Coalfield, Inner Mongolia. Journal of China University of Mining and Technology,28(1):57~60 (in Chinese with English abstract).
[13]  Goldhaber M B, Kaplan I R. 1980. Mechanisms of sulfur incorpora tion and isotopefractionization during early diagenesis in sediments of the Gulf of California. Mar. Chem., (9):95~143.
[14]  Lei Jiajin, Pu Yingying, Ren Deyi. 1995. Bacterium-like bodies and itssignificance in high organosulfur coal from Guiding. Acta Petrologica Sinica, 11 (4): 456~460(in Chinese with English abstract).
[15]  Lyons P C, Whelan J F, Dulong F T. 1989. Marine origin of pyritic sulfur in theLower Bakerstown coal bed, Castleman coal field,Maryland (U. S. A.). Int. J. Coal Geol.,(12):329~348.
[16]  Nowak J. 1996. Petrological coal seam accumulation model for the Zacler Formationof the Lower Silesian coal basin, Southwestern Poland. In: Gayer R, Harris I, ed. Coalbedmethane and coal ge ology. Geological Society Special Publication. London: The GeologicalSociety, No. 109: 261~286.
[17]  Peng Suping, Zhang Jianhua. 1995. The coal-bearing depositional en vironment andits influence to mining of the Wuda coalfield. Beijing: Publishing House of China CoalIndustry, 52~78 (in Chi nese).
[18]  Price F T, Shieh Y N. 1979. The distribution and isotopic composition of sulfur incoals from the Illinois basin. Econ. Geol. Bull.,Soc. Econ. Geol., 74: 1445~1461.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133