全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质论评  2009 

北祁连民乐二道沟口中―下泥盆统老君山组砂岩化学组分特征及其地质意义

Keywords: 祁连山,老君山组,前陆盆地,地球化学,物源分析,风化作用

Full-Text   Cite this paper   Add to My Lib

Abstract:

祁连山泥盆系包括中―下泥盆统老君山组和上泥盆统沙流水组。老君山组广泛分布在古祁连山的山前和山间盆地,主要为冲积扇粗碎屑沉积。碎屑岩中的碎屑组分和地球化学特征直接反映物源区和沉积盆地的构造环境。民乐二道沟口老君山组的碎屑岩化学组分特征指标为:K2O/Na2O值为0.13~8.13,Al2O3/SiO2值为0.15~0.28,LREE/HREE值为3.49~8.71,Eu/Eu*值为0.63~0.91,(Gd/Yb)N值为1.13~1.56,化学蚀变常数(CIA)为50~87。各项化学参数分布范围较广泛,结合多种物源判别图分析可以知道:该套碎屑物质主要来自南侧造山带并接受了盆地北侧的大陆区碎屑来源,具有前陆盆地的二元物源特征;早―中泥盆世北祁连处于前陆盆地晚期磨拉石阶段。

References

[1]  董云鹏 张国伟.造山带与前陆盆地结构构造动力学研究思路和进展[J].地球科学进展,:.
[2]  董治平 张元生 代炜.阿拉善地块下插河西走廊的发现及其构造意义[J].甘肃科学学报,2007,19(1):91-93.
[3]  董治平 张元生.河西走廊中部地区三维速度结构研究[J].地球学报,2007,28(3):270-276.
[4]  杜远生 张哲 等.北祁连―河西走廊志留纪和泥盆纪古地理及其对同造山过程的沉积响应[J].古地理学报,2002,4(4):1-8.
[5]  杜远生 朱杰 韩欣 顾松竹.从弧后盆地到前陆盆地――北祁连造山带奥陶纪-泥盆纪的沉积盆地与构造演化[J].地质通报,2004,(Z2):92-98.
[6]  杜远生 朱杰 顾松竹 徐亚军 杨江海.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J].中国科学:D辑,2007,37(10):1314-1329.
[7]  冯益民 何世平.祁连山大地构造与造山作用[M].北京:地质出版社,1996.1-135.
[8]  冯益民.祁连造山带研究概况――历史,现状及展望[J].地球科学进展,:.
[9]  何登发 李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.92-107.
[10]  和政军 李锦轶 莫申国 A.A.Sorokin.漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析[J].中国科学:D辑,:.
[11]  和政军 牛宝贵 任纪舜.陕南山阳地区刘岭群砂岩岩石地球化学特征及其构造背景分析[J].地质科学,2005,40(4):594-607.
[12]  赖绍聪 邓晋福 赵海铃.青藏高原北缘火山作用与构造演化[M].西安:陕西科学技术出版社,1996.1-46.
[13]  赖绍聪 邓晋福.北祁连奥陶纪洋脊扩张速率及古洋盆规模的岩石学约束[J].矿物岩石,1997,17(1):35-39.
[14]  李春昱 刘仰文 朱宝清 冯益民 等.秦岭及祁连山构造发展史[A].国际交流地质学术论文集[C].,1978(1).174―187.
[15]  李勇 王成善 等.西藏晚三叠世北羌塘前陆盆地构造层序及充填样式[J].地质科学,2002,37(1):27-37.
[16]  李忠 李任伟.合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性[J].岩石学报,:.
[17]  刘和甫.前陆盆地类型及褶皱―冲断层样式[J].地学前缘,:.
[18]  卢海峰 王宗起 王涛.西秦岭关家沟组物源分析[J].地质学报,2006,80(4):508-516.
[19]  毛明陆 刘池洋.河西走廊东部晚古生代前陆盆地演化特征[J].甘肃地质学报,1995,4(2):55-61.
[20]  裴先治 吴汉泉 左国朝.北祁连早古生代俯冲杂岩带的变形特征与构造演化[J].西安工程学院学报,1999,21(1):9-17.
[21]  申延平 吴朝东 岳来群 等.库车坳陷侏罗系砂岩碎屑组分及物源分析[J].地球学报,2005,26(3):235-240.
[22]  汪泽成 周海民 等.从前陆盆地充填地层分析盆山耦合关系[J].地球科学:中国地质大学学报,:.
[23]  汪正江 陈洪德.物源分析的研究与展望[J].沉积与特提斯地质,:.
[24]  夏林圻 夏祖春.北祁连山构造―火山岩浆演化动力学[J].西北地质科学,:.
[25]  夏林圻 夏祖春 等.北祁连山奥陶纪弧后盆地火山岩浆成因[J].中国地质,2003,30(1):48-60.
[26]  杨江海 杜远生 朱杰.甘肃景泰崔家墩下奥陶统阴沟组砂岩主化学组分特征及其对物源构造背景的判别[J].古地理学报,2007,9(2):197-206.
[27]  闫臻 肖文交 刘传周 等.祁连山老君山砾岩的碎屑组成和源区大地构造背景[J].地质通报,2006,25(1/2):83-98.
[28]  张明利 金之钧 等.前陆盆地研究的回顾与展望[J].地质论评,:.
[29]  张旗 王岳明.甘肃景泰县老虎山地区蛇绿岩及其上覆岩系中枕状熔岩的地球化学特征[J].岩石学报,:.
[30]  赵红格 刘池洋.物源分析方法及研究进展[J].沉积学报,2003,(9):409-415.
[31]  赵应成 王新民.贺西地区盆地构造特征与油气分布[J].石油学报,:.
[32]  左国朝 毛景文.北祁连西段早古生代构造演化史[J].甘肃地质学报,:.
[33]  左国朝 刘义科 等.北祁连造山带中――西段陆壳残块群的构造―地层特征[J].地质科学,:.
[34]  Allen P A, Crampton S L, Sinclair H D. 1991. The inception and early evolution of the North Alpine foreland basin. Switzerland: Basin Research, 3 : 143- 163.
[35]  Bhatia M R. 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91: 611-627.
[36]  Bhatia M R. 1985. Rare earth element geochemistry of Australia Paleozoic grawaekes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45 :97-113.
[37]  Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92: 181- 193.
[38]  Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shale. Chemical Geology, 104 : 1-37.
[39]  Cullers R L, Podkovyrov V N. 2000. Geochemistry of the Mesoproterozoic Lokhanda shales in southeastern Yakutia, Russia: implication for mineralogical sandstones and provenance control, and recycling. Precambrian Research, 104 : 77-93.
[40]  Dickson W R, Suczek C A. 1979. Plate Tectonic and Sandstone Composition . American Assoriation of Petroleum Geologists Bulletin, 63 : 2164-2182.
[41]  Dickson W R, Harbaugh D W, Shaller A H, Heller P L, Snyder W S. 1983. Detrital modes of upper Paleozoic sandstones derived from Antler orogen in Nevada: implications for nature of Antle Orogeny. American Journal of Science, 283 : 481-509.
[42]  Du Yuansheng, Wang Jiasheng, Han Xin, Shi G R. 2003. From flysch to molasse sedimentary and tectonic evolution of late Caledonian early Hercynian foreland basin in North Qilian Mountains. Journal of China University of Geosciences, 14 (1) 1-7.
[43]  Fedo C M, Nesbitt H W, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23 : 921-924.
[44]  Fedo C M, Young G M, Nesbitt H W. 1997. Paleoclimatic control on the composition of the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada: A greenhouse to icehouse transition. Precambrian Research, 86 : 201-223.
[45]  Gu X X. 1994. Geochemical characteristics of the Tethys-turbidites in northwestern Sichuan, China: Implications for provenance and interpretation of the tectonic setting. Geochimica et CosmochimicaActa, 58 (21): 4615-4631.
[46]  Gu XX, LiuJ M, ZhengMH, TangJ X, QiL. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence. Journal of Sedimentary Research, 72 (3) : 393-407.
[47]  McLennan S M, Taylor S R, McCulloch M T, Maynard J B. 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54: 2015-2050.
[48]  McLennan S M, Taylor S R. 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99 : 1-21.
[49]  Murphy J B. 2000. Tectonic influence on sedimentation along the southern flank of the late Paleozoic Magdalen basin in the Canadian Appalachians: Geochemical and isotopic constraints on the Horton Group in the St. Marys basin, Nova Scotia. Geological Society of America Bulletin, 112 (7) :997-1011.
[50]  Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299 : 715-717.
[51]  Nesbitt H W, Young G M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97: 129-147.
[52]  Roser B P, Korsch R J. 1988. Provenance signatures of sandstone- mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67 : 119-139.
[53]  Roser B P, Korsch R J. 1999. Geochemical characterization, evolution and source of a Mesozoic accretionary wedgc, the Torlesse Terrane, New Zealand. Geological Magazine, 136 (5) : 493-512.
[54]  Sinclair H D. 1997. Flysch to molasse transition in peripheral foreland basins: The role of the passive margin versus slab breakoff. Geology, 25 (12) : 1123-1126.
[55]  Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 312.
[56]  朱同兴.从弧后盆地到前陆盆地的沉积演化――以西藏北部羌塘中生代盆地分析为例[J].特提斯地质,1999,(23):1-15.
[57]  左国朝 吴汉泉.北祁连中段早古生代双向俯冲――碰撞造山模式剖析[J].地球科学进展,:.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133