全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2003 

地球流体力学的研究与进展

DOI: 10.3878/j.issn.1006-9895.2003.04.17

Keywords: 地球流体力学,稳定性与不稳定性,总能量守恒,辛几何算法,经济算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

简要介绍中国科学院大气物理研究所七十多年来在理论与计算地球流体力学方面的若干研究及其新的进展.在理论地球流体力学方面,介绍了长波动力学及线性稳定性问题、弱非线性理论及行星波动力学以及用Arnold方法(能量-Casimir方法)研究大气和海洋中各种流体运动的非线性稳定性问题的成果.此外,对扰动演变、扰动和基流相互作用及热带大气动力学中的第二类不稳定条件(CISK)也作了简要的介绍.在计算地球流体力学方面,主要内容包括:用物理观点和数学分析相结合的方法阐述了造成计算紊乱和计算不稳定的机理,论证计算稳定性、算

References

[1]  Huang Ronghui, and K. Gambo, The response of a model atmosphere in middle latitude to forcingby topography and stationary heat source, J. Meteor. Soc. Japan, 1981, 59, 220~237.
[2]  Huang Ronghui, and K. Gambo, The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat source, Ⅰ. Ⅱ. , J. Meteor. Soc. Japan, 1982, 60, 78~108.
[3]  Huang Ronghui,and K.Gambo,The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sourcein summer,J.Meteor.Soc.Japan,1983,61,495~503.
[4]  黄荣辉,冬季低纬热源异常对北半球大气环流影响的物理机制,中国科学(B辑),1986,10,91~103.
[5]  伍荣生,关于非均匀介质中波的传播问题,气象学报,1989,47,1~7.
[6]  黄荣辉、邹捍,球面斜压大气中上传行星波与纬向平均气流的相互作用,大气科学,1989,13,383~392.
[7]  Arnold, V.I., On the conditions of nonlinear stability of plane curvilinear flows of an ideal fluid,Dokl. Acad. NaukSSSR, 1965, 162 (5), 975~978. (English translation: Sov. Maths., 6, 773~777. )
[8]  Arnold,V.I., On an a priori estimate in the theory of hydrodynamic stability, Izv. Vyssh. Uchebn.Zaved. Matematika, 1966, 54 (5), 3~5. (English translation: Amer. Math. Transl. Ser. , 79, 267~269. )
[9]  Tang, M.Z. , Nonlinear stability analysis of the zonal flow in the middle and high latitudes, M. S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 1997.
[10]  Mu Mu, Wu Yonghui, Tang Mozhi et al. , Nonlinear stability analysis of the zonal flows at middle and high latitudes, Adv. At mos. Sci., 1999, 16 (4), 569~580.
[11]  Abarbanel, H.D.I. , D.D. Holm, J.E. Marsden et al. , Nonlinear stability analysis of stratified fluid equilibria, Philos. Trans. Roy. Soc. London, 1986, 318, 349~409.
[12]  Holm, D.D., R.T. Marsden, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria,Phys. Rep., 1985, 123, 1~116.
[13]  McIntyre, M.E. , and T. G. Shepherd, An exact local conservation theorem for finite amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Amol\'d\'s stability theorems, J. Fluid Mech., 1987, 181, 527~565.
[14]  Zeng Qingcun, Variational principle of instability of atmospheric motions, Adv. Atmos. Sci. , 1989, 6, 137~172.
[15]  Shepherd, T.G. , Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows, J. Fluid Mech., 1988, 196, 291~322.
[16]  Shepherd, T.G. , Nonlinear saturation of baroclinic instability. Part 2: continuous stratified fluid,J. Atmos. Sci., 1989, 46, 888~907.
[17]  Ripa, P. , Wave energy-momentum and pseudoenergy-momentum conservation for layered quasi-geostrophic instability problem, J. Fluid Mech. , 1992, 235, 379~398.
[18]  Liu Yongming, Mu Mu, and T. G. Shepherd, Nonlinear stability of continuously stratified quasi-geostrophicflow, J. Fluid Mech. , 1996, 324, 419~439.
[19]  Liu Yongming, and Mu Mu, Nonlinear stability of Generalized Eady\'s Model, J. Atmos. Sci. , 2000, 57, 821~827.
[20]  Mu Mu, Zeng Qingcun, T.G. Shepherd et al., Nonlinear stability of multi-layer quasi-geostrophic flow,J. Fluid Mech. , 1994, 264, 165~184.
[21]  Mu Mu, A criterion of symmetric stability of planetary atmospheres, East Asian Monsoon and Torrential Rainin China, 1999, 476~482.
[22]  McWilliams, J.C. , An application of equivalent modons to atmospheric blocking, Dyn. Atmos. Oceans, 1980,5, 43~66.
[23]  Nycander, J. , Refutation of stability proofs for dipole vortices, Phys. Fluids, 1992, 4, 67~476.
[24]  Wu Yonghui, and Mu Mu, Nonlinear instability of dipole vortices and the atmospheric blocking, Progress in Natural Science, 1999, 9, 234~237.
[25]  Li Yang, Mu Mu, and Wu Yonghui, A study on the nonlinear stability of fronts in the Ocean on a sloping continental shelf, Adv. Atmos. Sci., 2000, 17, 275~284.
[26]  Vladimirov, V.A. , Mu Mu, Wu Yonghui et al. , On nonlinear stability of baroclinic fronts,Geophys. Astrophys. Fluid Dynamics, 1999, 91, 65~84.
[27]  Shepherd, T.G. , Nonlinear saturation of baroclinic instability. Part 1: The two-layer model, J. Atmos. Sci. ,1988, 45, 2014~2025.
[28]  Xiang Jie, and Mu Mu, Saturation of nonlinear instability of parallel shear flow, Progress in Natural Science,1997, 7, 239~243.
[29]  Ishioka, K. , and S. Yoden, Numerical methods of estimating bounds on the nonlinear saturation of barotropic instability, J. Meteor. Soc. Japan, 1996, 74 (2), 167~174.
[30]  Zhu, X. , and D. F. Strobel, Nonlinear saturation of baroclinic instability in two-layer models, J. Atmos. Sci. ,1992, 49, 1961~1967.
[31]  Olascoaga, M.J. , and P. Ripa, Baroclinic instability in a two-layer model with a free boundary and βeffect,J. Geophys. Res. , 1999, 104, 23357~23366.
[32]  冯康、秦孟兆,Hamilton动力体系的Hamilton算法,自然科学进展,1991,1(2),102~112.
[33]  曾庆存、季仲贞、袁重光,原始方程差分格式的设计,第二次全国数值天气预报会议论文集,北京:科学出版社,1980,300~313.
[34]  曾庆存、季仲贞、李荣凤,发展方程差分格式的构造与近岸海流数值模拟,大气科学,1988,特刊,166~175.
[35]  王斌、季仲贞,一类快速经济算法,自然科学进展,1994,4(4),417-422.
[36]  王斌、季仲贞,曾庆存,一种新的区域分离法,力学学报,1994,26(5),530~535.
[37]  季仲贞、王斌,一类高时间差分精度的平方守恒格式的构造及其应用检验,自然科学进展,1994,4(2),149-157.
[38]  Ji Zhongzhen,and Li Jing,A High-older compact scheme with square-conservativity,Adv.Atmos.Sci.,1998,15(4),580~584.
[39]  季仲贞、李京、王斌,紧致平方守恒格式的构造和检验,大气科学,1999,23(3),323~332.
[40]  季仲贞、王斌,保持总能量守恒的"半拉格朗日算法",计算物理,1996,13(4),403~409.
[41]  陈嘉滨、季仲贞,半拉格朗日平方守恒计算格式的研究,大气科学,2001,25(6),837~846.
[42]  季仲贞、陈嘉滨,一种新的显式半Lagrange差分格式,自然科学进展,2001,11(9),909-913.
[43]  杨大升、刘余滨、刘式适,动力气象学,北京:气象出版社,1983.
[44]  Yu Rucong,Application of a Shape-Preserving Advection Schemetothe Moisture Equationin an E-grid Regional Forecast Model,Adv.Atmos.Sci.,1995,12(1),13~19.
[45]  曾庆存、宇如聪、彭贵康等,"雅安天漏"研究,Ⅲ.特征、物理量结构及其形成机制,大气科学,1994,18(6),649-659.
[46]  Zhong Qing,The Formulation of Perfect Square Conservative Time Difference Scheme and Its Preliminary Check,Chinese Science Bulletin,1992,37,497~502.
[47]  李建平、曾庆存、丑纪范,非线性常微分方程的计算不确定性原理Ⅰ.数值结果,中国科学(E辑),2000,43(5),403~412.
[48]  李建平、曾庆存、丑纪范,非线性常微分方程的计算不确定性原理Ⅱ.理论分析,中国科学(E辑),2000,43(6),550~567.
[49]  Lin Wantao,Ji Zhongzhen,and Wang Bin,Construction of explicit quasi-complete square conservative difference schemes offorced dissipative nonlinear evolution equations,Adv.Atmos.Sci.,2001,18(4),604~612.
[50]  Rossby, C. G. , and Collaborators, Relation between variations in the intensity of the zonal circulation of the atmophere and the displacements of the semi-permanent centers of action, J. Marine Research, 1939, 2, 38~55.
[51]  Kible, E. A. , Application of equations of baroclinic fluid mechanics to meteorology, Ezv. USSR Academy of Sciencs, Ser. Geogr. Geophys. , 1940, 5 (Russian) .
[52]  Jaw, J.J. , The formation of semipermanent centers of action in relation to the horrizontal solenoid field,J. Meteor., 1946, 3, 103~114.
[53]  Kuo, H.L., Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere,J. Meteoro., 1949, 6, 105~122.
[54]  Charney, J.G., The dynamics of long waves in a baroclinicwesterly current, J. Meteor., 1947, 4, 125~162.
[55]  Eady, E.T. , Long waves and cyclone waves, Tellus, 1949, 79, 267~269.
[56]  Kuo, H.L. , Three-dimensional disturbances ina baroclinic zonal current, J. Meteor. , 1952, 9, 260~272.
[57]  伍荣生,大地形与扰动的不稳定性,气象学报,1964,34,11~19.
[58]  叶笃正,波状基本气流中的若干扰动动力学问题,气象学报,1964,34,1~10.
[59]  Andrews, D.G. , and M. E. McIntyre, Planetary waves in horizontal and vertical shear the generalized EliassenPalm relation and the mean zonal acceleration , J. Atmos. Sci. , 1976, 33, 2031~2048.
[60]  任舒展等,斜压大气中连续谱动力学理论及运用Ⅰ.连续谱动力学理论,中国科学(B辑),1995,25,1210~1218.
[61]  任舒展等,斜压大气中连续谱动力学理论及运用Ⅱ.大气环流中的连续谱和离散谱,中国科学(B辑),1995,25,1329~1338.
[62]  李崇银,垂直风切变中的CISK,大气科学,1983,7,427~431.
[63]  Pedlosky,J.,Finite-amplitude baroclinic waves,J.Atmos.Sci.,1970,27,15~30.
[64]  黄荣辉、岸保勘三郎,关于冬季北半球定常行星波传播的另一波导的研究,中国科学(B辑),1983,7,940~950.
[65]  黄荣辉,球面大气定常行星波的波作用守恒方程与波作用通量所表征的定常行星波传播波导,中国科学(B辑),1984,8,766~775.
[66]  黄荣辉,大气行星尺度运动的动力特征,大气科学,1986,10,348~356.
[67]  Rossby, C.G., On the propagation of frequences and energyin certain types of oceanic and atmospheric waves,J. Meteor., 1945, 2, 187~264.
[68]  Yeh, T.C. , On the energy dispersion in the atmosphere, J. Meteor. , 1949, 6, 1~16.
[69]  Zeng Qingcun, The evolution of Rossby wave packet in a three-dimensional baroclinic atmosphere,J. Atmos. Sci., 1983, 40, 73~84.
[70]  卢佩生、曾庆存,正压大气中扰动的演变,大气科学,1981,5,1~8.
[71]  卢佩生等,正压准地转模式的谱和扰动的演变,中国科学,1986(B辑),10,1225~1233.
[72]  张明华,大气动力学中的连续谱及其在大气环流中的重要地位,中国科学院大气物理研究所博士学位论文,1987.
[73]  Pedlosky, J., Geophysical Fluid Dynamics, 2nd ed., Springer, 1987, 710pp.
[74]  Pedlosky,J.,Finite-amplitude baroclinic waves atminimum critical shear,J.Atmos.Sci.,1982,39,555~562.
[75]  巢纪平、叶笃正,正压大气中的螺旋行星波,大气科学,1977,2,81~88.
[76]  刘式适、杨大升,地球大气行星波的螺旋结构,气象学报,1979,37,14~27.
[77]  Fjφrtoft,R.,On the changes in the spectral distribution of kinetic energy for two dimensional nondivergent flow,Tellus,1953,5,225~230.
[78]  曾庆存,数值天气预报的数学物理基础,北京:科学出版社,1979.
[79]  叶笃正、朱抱真,大气环流的若干基本问题,北京:科学出版社,1958.
[80]  Fjφrtoft, R. , Application of integral theorems in deriving criteria of laminar flows and for the baroclinic circular vortex, Geophys. Publ., 1950, 17 (6), 1~52.
[81]  Andrews, D.G., On the existence of nonzonal flows satisfying sufficient conditions for stability,Geophys. Astrophys. Fluid Dyn. , 1984, 28, 243~256.
[82]  Dowling, T.E. , A relationship between potential vorticity and zonal wind on Jupiter, J. Atmos. Sci. , 1993,50, 14~22.
[83]  Ek, N.S. , and G. E. Swaters, Geostrophic scatter diagrams and the application of quasigeostrophic free-mode theory to a northeast pacific blocking episode, J. Atmos. Sci. , 1994, 51, 563~581.
[84]  Dowling, T.E. , Dynamics of Jovian atmospheres, Ann. Rev. Fluid Mech. , 1995, 27, 293~334.
[85]  Cho, H.R. , T.G. Shepherd, and V. A. Vladimirov, Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere, J. Atmos. Sci. , 1993, 50, 822~836.
[86]  Ripa, P. , Arnol\'d\'s second stability theorem for the equivalent barotropic model, J. FluidMech. , 1993, 257,597~605.
[87]  Song, S.J. , and Liu Q. Y. , On disturbance and nonlinear stability of the multi-layer quasi-geostrophic basic flows, Science inChina (Ser. D), 1999, 42, 160~171.
[88]  Song, S.J. , and Liu Q. Y. , Disturbance evolution and the nonlinear stability to the basic flows for two-dimensional quasi-geostrophic motion, Chinese Science Bulletin, 1999, 44, 1179~1184.
[89]  Mu Mu, Nonlinear stability criteria for motions of multi-layer quasigeostrophic flow, Sciences in China (ser. B), 199l, 34, 1516~1528.
[90]  Mu Mu, Nonlinear stability of two-dimensional quasi-geostrophic motions, Geophys. Astrophys. Fluid Dyn. ,1992, 65, 57~76.
[91]  Mu Mu, and Wang X. Y. , Nonlinear stability criteria for the motion of three-dimensional quasigeostrophic flowon a beta-plane, Nonlinearity, 1992, 5, 353~371.
[92]  Mu Mu, and T. G. Shepherd, On Arnol\' d\' s second nonlinear stability theorem for two-dimensional quasi-ge-ostrophic flow, Geophys. Astrophys. Fluid Dyn. , 1994, 75, 21~37.
[93]  Mu Mu, and T. G.Shepherd, Nonlinear stability of Eady\' smodel, J. Atmos. Sci., 1994, 51, 3427~3436.
[94]  Liu Yongming, and Mu Mu, Arnol\' d\' s second nonlinear stability theorem for general multi-layer quasi-geophysical model, Adv. Atmos. Sci., 1994, 11, 36~42.
[95]  Liu Yongming, and Mu Mu, Nonlinear stability theorem for Eady\' s model of quasi-geostrophic baroclinic flow,J. Atmos. Sci. , 1996, 53, 1459~1463.
[96]  Phillips, N.A. , Energy transformations and meridional circulations associated with simple baroclinic waves in atwo-level, quasi-geostrophicmodel, Tellus, 1954, 6, 273~286.
[97]  Mu Mu, Optimality of a nonlinear stability criterion of two-layer Phillips model, Chinese Science Bulletin,1998, 43, 656~659.
[98]  Li Yang, Baroclinic Instability in the Generalized Phillips\' Model Part Ⅱ: Three-layer Model, Adv. Atmos. Sci. ,2000, 17, 413~432.
[99]  Mu Mu, and J. Simon, A remark on nonlinear stability of the three-dimensional quasigeostrophic motions, Chi-neseScience Bulletin, 1993, 38, 1978~1984.
[100]  Lindzen, R. , The Eady problem for a basic state with zero PV gradient but β=0, J. Atmos. Sci. , 1994, 51,3221~3226.
[101]  Li Yang, Mu Mu, S.E. Moon, et al. , On the linear and nonlinear stability of generalized Eady model, Part I:normal mode method, Korean J. Atmos. Sci. , 1998, 1, 113~118.
[102]  Li Yang, Mu Mu, S. E. Moon, et al. , On the linear and nonlinear stability of generalized Eady model, Part Ⅱ:nonlinear stability theorem, Korean J. Atmos. Sci. , 1998, 1, 119~125.
[103]  Xu, Q. , Generalized energetics for linear and nonlinear symmetric instabilities, J. Atmos. Sci. , 1986, 43,972~984.
[104]  Mu Mu, T.G. Shepherd, and K. Swanson, On nonlinear symmetric stability and the nonlinear saturation ofsymmetric instability, J. Atmos. Sci., 1996, 53, 2918~2923.
[105]  Mu Mu, V.A. Vladimirov, and Wu Yonghui, Energy-Casimir and energy-Lagrange method in the symmetricstability problems, J.Atmos. Sci. , 1999, 56, 400~411.
[106]  Wu Yonghui, and Mu Mu, A remark on the nonlinearly symmetric stability criteria, Chinese Science Bulletin,1998, 43 (12), 1050~1052.
[107]  Bowman, J.C. , and T. G. Shepherd, Nonlinear symmetric stability of planetary atmospheres, J. FluidMech. ,1995, 296, 391~407.
[108]  Shepherd, T.G. , Nonlinear saturation of baroclinic instability, part 3: bounds on the energy, J. Atmos. Sci.,1993, 50, 2697~2709.
[109]  Mu Mu, and Xiang Jie, On the evolution of finite-amplitude disturbance to the barotropic and baroclinic quasigeostrophicflows, Adv. Atmos. Sci., 1998, 15, 113~123.
[110]  季仲贞,平方守恒型差分格式的构造,中期数值天气预报文集,北京:气象出版社,1982.
[111]  曾庆存、张学洪,球面上斜压原始方程组保持总有效能量守恒的差分格式,大气科学,1987,11(2),113~127.
[112]  Qin M.Z.,and W.J.Zhu:Construction of Symplectic schemes for wave equation via hyperbolic function sinh (x),cosh(x),tach(x),ComputerMath.Applic.,1993,26(8),1~11.
[113]  Mclachlan,Smpleticintegration of Hamilton wave equations,NumerischeMathematik,1994,66,465~492.
[114]  王斌、曾庆存、季仲贞,平方守恒系统与Hamilton系统,中国科学(A辑),1995年,25(7),765~770.
[115]  王斌、季仲贞、曾庆存,辛算子法及其检验,自然科学进展,1997,7(6),668~675.
[116]  王斌、季仲贞、肖庆农,大气动力学方程的Hamilton算法,计算物理,2001,18(4),289~297.
[117]  Ji Zhongzhen,Wang Bin,Zhao Ying et al.,The total energy conservation and the symplectic algorithm,Adv.Atmos.Sci.,2002,19(3),459~467.
[118]  Zhao Ying,Wang Bin and Ji Zhongzhen,Symplectic-like difference schemes for generalized Hamiltonian Systems,Adv.Atmos.Sci.,2002,19(4),719~726.
[119]  赵颖、王斌、季仲贞,动力保守系统的一类双属性格式,中国科学院研究生院学报,2002,19(1),82~85.
[120]  曾庆存、季仲贞,发展方程的计算稳定性问题,计算数学,1981,3(1),79~8.
[121]  曾庆存、季仲贞,关于非线性计算稳定性的若干问题,力学学报,1981,13(3),209~217.
[122]  季仲贞、曾庆存,发展方程差分格式的构造和应用,大气科学,1982,6(1),88~94.
[123]  季仲贞,非线性计算稳定性的比较分析,大气科学,1980,4(4),344~354.
[124]  季仲贞,二维Lilly格式中非线性计算不稳定的例子,科学通报,1980,25(9),890~892.
[125]  季仲贞,Arakawa格式非线性计算不稳定的例子,气象学报,1981,39(2),237~239.
[126]  季仲贞、曾庆存,谱展开法的非线性计算不稳定的例子,科学通报,1982,27(20),1246~1248.
[127]  曾庆存,计算稳定性的若干问题,大气科学,1978,2(3),181~191.
[128]  曾庆存、张学洪,完全保持能量守恒的可压缩流体时空差分格式和协调的分解算法,中国科学,1981,11(11),1355~1366.
[129]  王斌、季仲贞,显式完全平方守恒差分格式的构造及其初步检验,科学通报,1990,35(10),766~768.
[130]  季仲贞、王斌,再论发展方程差分格式的构造和应用,大气科学,1991,15(2),1~10.
[131]  王斌、季仲贞、曾庆存,一种省时的显式数值积分方案,科学通报,1992,37(24),2247~2250.
[132]  王斌、季仲贞,协调耗散算子与显式完全平方守恒差分格式,中国科学(B辑),1993,23(6),665~672
[133]  Wang Bin,and Ji Zhongzhen,AnImproved splitting method,Adv.Atmos.Sci.,1993,10(4),447~452.
[134]  Yu Rucong,A Two Step Shape-Preserving Advection Scheme,Adv.Atmos.Sci.,1994,11(4),479~490.
[135]  宇如聪,E网格变量分布下差分格式的性质,大气科学,1994,18(2),152~162.
[136]  宇如聪、曾庆存、彭贵康等,"雅安天漏"研究,Ⅱ.数值预报试验,大气科学,1994,18(5),535-551.
[137]  钟青,物理守恒律保真格式构造与数值预报斜压原始方程传统谱模式改进研究,气象学报,1995,50(6),641~661.
[138]  Zhong Qing,Chen Jiatian,and Sun Zuoling,Elimination of computational systematical errors and improvements of weather and climate system models in relation to baroclinic primitive equations,Adv.Atmos.Sci.,2002,19,1103~1112.
[139]  林万涛、季仲贞、王斌,强迫耗散非线性发展方程显式差分格式的计算稳定性,中国科学院研究生院学报,2002,19(4),86~89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133