Huang Ronghui, and K. Gambo, The response of a model atmosphere in middle latitude to forcingby topography and stationary heat source, J. Meteor. Soc. Japan, 1981, 59, 220~237.
[2]
Huang Ronghui, and K. Gambo, The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat source, Ⅰ. Ⅱ. , J. Meteor. Soc. Japan, 1982, 60, 78~108.
[3]
Huang Ronghui,and K.Gambo,The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sourcein summer,J.Meteor.Soc.Japan,1983,61,495~503.
Arnold, V.I., On the conditions of nonlinear stability of plane curvilinear flows of an ideal fluid,Dokl. Acad. NaukSSSR, 1965, 162 (5), 975~978. (English translation: Sov. Maths., 6, 773~777. )
[8]
Arnold,V.I., On an a priori estimate in the theory of hydrodynamic stability, Izv. Vyssh. Uchebn.Zaved. Matematika, 1966, 54 (5), 3~5. (English translation: Amer. Math. Transl. Ser. , 79, 267~269. )
[9]
Tang, M.Z. , Nonlinear stability analysis of the zonal flow in the middle and high latitudes, M. S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 1997.
[10]
Mu Mu, Wu Yonghui, Tang Mozhi et al. , Nonlinear stability analysis of the zonal flows at middle and high latitudes, Adv. At mos. Sci., 1999, 16 (4), 569~580.
Holm, D.D., R.T. Marsden, and A. Weinstein, Nonlinear stability of fluid and plasma equilibria,Phys. Rep., 1985, 123, 1~116.
[13]
McIntyre, M.E. , and T. G. Shepherd, An exact local conservation theorem for finite amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Amol\'d\'s stability theorems, J. Fluid Mech., 1987, 181, 527~565.
[14]
Zeng Qingcun, Variational principle of instability of atmospheric motions, Adv. Atmos. Sci. , 1989, 6, 137~172.
[15]
Shepherd, T.G. , Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows, J. Fluid Mech., 1988, 196, 291~322.
[16]
Shepherd, T.G. , Nonlinear saturation of baroclinic instability. Part 2: continuous stratified fluid,J. Atmos. Sci., 1989, 46, 888~907.
[17]
Ripa, P. , Wave energy-momentum and pseudoenergy-momentum conservation for layered quasi-geostrophic instability problem, J. Fluid Mech. , 1992, 235, 379~398.
[18]
Liu Yongming, Mu Mu, and T. G. Shepherd, Nonlinear stability of continuously stratified quasi-geostrophicflow, J. Fluid Mech. , 1996, 324, 419~439.
[19]
Liu Yongming, and Mu Mu, Nonlinear stability of Generalized Eady\'s Model, J. Atmos. Sci. , 2000, 57, 821~827.
[20]
Mu Mu, Zeng Qingcun, T.G. Shepherd et al., Nonlinear stability of multi-layer quasi-geostrophic flow,J. Fluid Mech. , 1994, 264, 165~184.
[21]
Mu Mu, A criterion of symmetric stability of planetary atmospheres, East Asian Monsoon and Torrential Rainin China, 1999, 476~482.
[22]
McWilliams, J.C. , An application of equivalent modons to atmospheric blocking, Dyn. Atmos. Oceans, 1980,5, 43~66.
[23]
Nycander, J. , Refutation of stability proofs for dipole vortices, Phys. Fluids, 1992, 4, 67~476.
[24]
Wu Yonghui, and Mu Mu, Nonlinear instability of dipole vortices and the atmospheric blocking, Progress in Natural Science, 1999, 9, 234~237.
[25]
Li Yang, Mu Mu, and Wu Yonghui, A study on the nonlinear stability of fronts in the Ocean on a sloping continental shelf, Adv. Atmos. Sci., 2000, 17, 275~284.
[26]
Vladimirov, V.A. , Mu Mu, Wu Yonghui et al. , On nonlinear stability of baroclinic fronts,Geophys. Astrophys. Fluid Dynamics, 1999, 91, 65~84.
[27]
Shepherd, T.G. , Nonlinear saturation of baroclinic instability. Part 1: The two-layer model, J. Atmos. Sci. ,1988, 45, 2014~2025.
[28]
Xiang Jie, and Mu Mu, Saturation of nonlinear instability of parallel shear flow, Progress in Natural Science,1997, 7, 239~243.
[29]
Ishioka, K. , and S. Yoden, Numerical methods of estimating bounds on the nonlinear saturation of barotropic instability, J. Meteor. Soc. Japan, 1996, 74 (2), 167~174.
[30]
Zhu, X. , and D. F. Strobel, Nonlinear saturation of baroclinic instability in two-layer models, J. Atmos. Sci. ,1992, 49, 1961~1967.
[31]
Olascoaga, M.J. , and P. Ripa, Baroclinic instability in a two-layer model with a free boundary and βeffect,J. Geophys. Res. , 1999, 104, 23357~23366.
Yu Rucong,Application of a Shape-Preserving Advection Schemetothe Moisture Equationin an E-grid Regional Forecast Model,Adv.Atmos.Sci.,1995,12(1),13~19.
Lin Wantao,Ji Zhongzhen,and Wang Bin,Construction of explicit quasi-complete square conservative difference schemes offorced dissipative nonlinear evolution equations,Adv.Atmos.Sci.,2001,18(4),604~612.
[50]
Rossby, C. G. , and Collaborators, Relation between variations in the intensity of the zonal circulation of the atmophere and the displacements of the semi-permanent centers of action, J. Marine Research, 1939, 2, 38~55.
[51]
Kible, E. A. , Application of equations of baroclinic fluid mechanics to meteorology, Ezv. USSR Academy of Sciencs, Ser. Geogr. Geophys. , 1940, 5 (Russian) .
[52]
Jaw, J.J. , The formation of semipermanent centers of action in relation to the horrizontal solenoid field,J. Meteor., 1946, 3, 103~114.
[53]
Kuo, H.L., Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere,J. Meteoro., 1949, 6, 105~122.
[54]
Charney, J.G., The dynamics of long waves in a baroclinicwesterly current, J. Meteor., 1947, 4, 125~162.
[55]
Eady, E.T. , Long waves and cyclone waves, Tellus, 1949, 79, 267~269.
[56]
Kuo, H.L. , Three-dimensional disturbances ina baroclinic zonal current, J. Meteor. , 1952, 9, 260~272.
[57]
伍荣生,大地形与扰动的不稳定性,气象学报,1964,34,11~19.
[58]
叶笃正,波状基本气流中的若干扰动动力学问题,气象学报,1964,34,1~10.
[59]
Andrews, D.G. , and M. E. McIntyre, Planetary waves in horizontal and vertical shear the generalized EliassenPalm relation and the mean zonal acceleration , J. Atmos. Sci. , 1976, 33, 2031~2048.
Fjφrtoft,R.,On the changes in the spectral distribution of kinetic energy for two dimensional nondivergent flow,Tellus,1953,5,225~230.
[78]
曾庆存,数值天气预报的数学物理基础,北京:科学出版社,1979.
[79]
叶笃正、朱抱真,大气环流的若干基本问题,北京:科学出版社,1958.
[80]
Fjφrtoft, R. , Application of integral theorems in deriving criteria of laminar flows and for the baroclinic circular vortex, Geophys. Publ., 1950, 17 (6), 1~52.
[81]
Andrews, D.G., On the existence of nonzonal flows satisfying sufficient conditions for stability,Geophys. Astrophys. Fluid Dyn. , 1984, 28, 243~256.
[82]
Dowling, T.E. , A relationship between potential vorticity and zonal wind on Jupiter, J. Atmos. Sci. , 1993,50, 14~22.
[83]
Ek, N.S. , and G. E. Swaters, Geostrophic scatter diagrams and the application of quasigeostrophic free-mode theory to a northeast pacific blocking episode, J. Atmos. Sci. , 1994, 51, 563~581.
[84]
Dowling, T.E. , Dynamics of Jovian atmospheres, Ann. Rev. Fluid Mech. , 1995, 27, 293~334.
[85]
Cho, H.R. , T.G. Shepherd, and V. A. Vladimirov, Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere, J. Atmos. Sci. , 1993, 50, 822~836.
[86]
Ripa, P. , Arnol\'d\'s second stability theorem for the equivalent barotropic model, J. FluidMech. , 1993, 257,597~605.
[87]
Song, S.J. , and Liu Q. Y. , On disturbance and nonlinear stability of the multi-layer quasi-geostrophic basic flows, Science inChina (Ser. D), 1999, 42, 160~171.
[88]
Song, S.J. , and Liu Q. Y. , Disturbance evolution and the nonlinear stability to the basic flows for two-dimensional quasi-geostrophic motion, Chinese Science Bulletin, 1999, 44, 1179~1184.
[89]
Mu Mu, Nonlinear stability criteria for motions of multi-layer quasigeostrophic flow, Sciences in China (ser. B), 199l, 34, 1516~1528.
[90]
Mu Mu, Nonlinear stability of two-dimensional quasi-geostrophic motions, Geophys. Astrophys. Fluid Dyn. ,1992, 65, 57~76.
[91]
Mu Mu, and Wang X. Y. , Nonlinear stability criteria for the motion of three-dimensional quasigeostrophic flowon a beta-plane, Nonlinearity, 1992, 5, 353~371.
[92]
Mu Mu, and T. G. Shepherd, On Arnol\' d\' s second nonlinear stability theorem for two-dimensional quasi-ge-ostrophic flow, Geophys. Astrophys. Fluid Dyn. , 1994, 75, 21~37.
[93]
Mu Mu, and T. G.Shepherd, Nonlinear stability of Eady\' smodel, J. Atmos. Sci., 1994, 51, 3427~3436.
[94]
Liu Yongming, and Mu Mu, Arnol\' d\' s second nonlinear stability theorem for general multi-layer quasi-geophysical model, Adv. Atmos. Sci., 1994, 11, 36~42.
[95]
Liu Yongming, and Mu Mu, Nonlinear stability theorem for Eady\' s model of quasi-geostrophic baroclinic flow,J. Atmos. Sci. , 1996, 53, 1459~1463.
[96]
Phillips, N.A. , Energy transformations and meridional circulations associated with simple baroclinic waves in atwo-level, quasi-geostrophicmodel, Tellus, 1954, 6, 273~286.
[97]
Mu Mu, Optimality of a nonlinear stability criterion of two-layer Phillips model, Chinese Science Bulletin,1998, 43, 656~659.
[98]
Li Yang, Baroclinic Instability in the Generalized Phillips\' Model Part Ⅱ: Three-layer Model, Adv. Atmos. Sci. ,2000, 17, 413~432.
[99]
Mu Mu, and J. Simon, A remark on nonlinear stability of the three-dimensional quasigeostrophic motions, Chi-neseScience Bulletin, 1993, 38, 1978~1984.
[100]
Lindzen, R. , The Eady problem for a basic state with zero PV gradient but β=0, J. Atmos. Sci. , 1994, 51,3221~3226.
[101]
Li Yang, Mu Mu, S.E. Moon, et al. , On the linear and nonlinear stability of generalized Eady model, Part I:normal mode method, Korean J. Atmos. Sci. , 1998, 1, 113~118.
[102]
Li Yang, Mu Mu, S. E. Moon, et al. , On the linear and nonlinear stability of generalized Eady model, Part Ⅱ:nonlinear stability theorem, Korean J. Atmos. Sci. , 1998, 1, 119~125.
[103]
Xu, Q. , Generalized energetics for linear and nonlinear symmetric instabilities, J. Atmos. Sci. , 1986, 43,972~984.
[104]
Mu Mu, T.G. Shepherd, and K. Swanson, On nonlinear symmetric stability and the nonlinear saturation ofsymmetric instability, J. Atmos. Sci., 1996, 53, 2918~2923.
[105]
Mu Mu, V.A. Vladimirov, and Wu Yonghui, Energy-Casimir and energy-Lagrange method in the symmetricstability problems, J.Atmos. Sci. , 1999, 56, 400~411.
[106]
Wu Yonghui, and Mu Mu, A remark on the nonlinearly symmetric stability criteria, Chinese Science Bulletin,1998, 43 (12), 1050~1052.
[107]
Bowman, J.C. , and T. G. Shepherd, Nonlinear symmetric stability of planetary atmospheres, J. FluidMech. ,1995, 296, 391~407.
[108]
Shepherd, T.G. , Nonlinear saturation of baroclinic instability, part 3: bounds on the energy, J. Atmos. Sci.,1993, 50, 2697~2709.
[109]
Mu Mu, and Xiang Jie, On the evolution of finite-amplitude disturbance to the barotropic and baroclinic quasigeostrophicflows, Adv. Atmos. Sci., 1998, 15, 113~123.
Qin M.Z.,and W.J.Zhu:Construction of Symplectic schemes for wave equation via hyperbolic function sinh (x),cosh(x),tach(x),ComputerMath.Applic.,1993,26(8),1~11.
[113]
Mclachlan,Smpleticintegration of Hamilton wave equations,NumerischeMathematik,1994,66,465~492.
Zhong Qing,Chen Jiatian,and Sun Zuoling,Elimination of computational systematical errors and improvements of weather and climate system models in relation to baroclinic primitive equations,Adv.Atmos.Sci.,2002,19,1103~1112.