全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2005 

两种逐线积分辐射模式大气吸收的比较研究

DOI: 10.3878/j.issn.1006-9895.2005.04.09

Keywords: 逐线积分,辐射通量,大气冷却率,模式比较

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于缺乏完整的和精确的实验室测量结果,目前无法判断各种逐线积分方案的最终精度.因此,逐线积分模式精度的比较基本上只能在模式之间进行.比较了作者研制的快速高效逐线积分大气吸收计算方法(简记为ZS2000),与国际上用得较多的LBLRTM(Line-By-LineRadiativeTransferModel).得出:二者在长波区间向上和向下辐射通量的相对差别对整层大气均小于3.1%,大气冷却率的绝对差别对整层大气均小于0.13K·d-1,处于ICRCCM(Intercompariso

References

[1]  Goody R M, Yung Y L. Atmospheric Radiation: Theoretical Basis. Oxford: Oxford University Press, 1989. 125~181
[2]  张华. 非均匀路径相关k-分布方法的研究. 中国科学院大气物理研究所博士论文, 1999. 24~39Zhang Hua. The study on correlated k-distribution for inhomogeneous atmosphere. Ph.D. dissertation (in Chinese), the Institute of Atmospheric Physics, Chinese Academy of Sciences, 1999. 24~39
[3]  张华, 石广玉. 一种快速高效的逐线积分大气吸收计算方法. 大气科学, 2000, 24(1): 111~121Zhang Hua, Shi Guangyu. A fast and efficient line-by-line algorithm on atmospheric absorption. Chinese Journal of Atmospheric Sciences (in Chinese), 2000, 24 (1): 111~121
[4]  Berk A, Anderson G P, Acharya P K, et al. MODTRAN4 User\'s Manual. Air Force Research Laboratory, 1999
[5]  Zhang H, Nakajima T, Shi G Y, et al. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res., 2003, 108(D20): 4641
[6]  Smith H J P, Dube D J, Gardner M E, et al. FASCODE-Fast Atmospheric Signature Code (Spectral Transmittance Radiance). AFGL-TR-78-0081, Scientific Report, No. 2, 1978
[7]  Clough S A, Iacono M J, Moncet J-L. Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 1992, 97: 15761~15785
[8]  Clough S A, Iacono M J. Line-by-line calculation of atmospheric fluxes and cooling rates 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 1995, 100: 16519~16535
[9]  Clough S A, Kneizys F X, Anderson G P, et al. The updated LBLRTM_ver5.21. http: //www.rtweb.aer.com/, 2000
[10]  Feigelson E M, Fomin B A, Gorchakova I A, et al. Calculation of longwave radiation fluxes in atmospheres. J. Geophy. Res., 1991, 96: 8985~9001
[11]  Uchiyama A. Line-by-line computation of the atmospheric absorption spectrum using the decomposed Voigt line shape. J. Quant. Spectrosc. Radiat. Transfer. 1992, 47: 521~532
[12]  Ellingson R G, Ellis J, Fels S. The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 1991, 96: 8929~8953
[13]  Fouquart Y, Bonnel B. Intercomparing shortwave radiation codes for climate studies. J. Geophy. Res., 1991, 96: 8955~8968
[14]  Zhang X H, Shi G Y, Liu H, et al. IAP Global Ocean-Atmosphere-Land System Model. Beijing: Science Press, 2000
[15]  Wu T W, Liu P, Wang Z Z, et al. The performance of atmospheric component model R42L9 of GOALS/LASG. Adv. Atmos. Sci., 2003, 20: 726~742
[16]  Nakajima T, Tsukamoto M, Tsushima Y, et al. Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 2000, 39: 4869~4878
[17]  Garand L, Turner D S, Larocque M, et al. Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels. J. Geophys. Res., 2001, 106: 24017~24031
[18]  Shepard A, Kneizys F X. Convolution algorithm for the Lorentz function. Appl. Opt., 1979, 18: 2329~2333
[19]  Mlawer E J, Taubman S J, Brown P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 1997, 102: 16663~16682
[20]  Kneizys F X, Shettle E P, Anderson G P, et al. Users Guide to LOWTRAN7, AFGL-TR-88-0177. U. S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988
[21]  Shi Guangyu. An accurate calculation and representation of the infrared transmission function of the atmospheric constituents. Ph.D. dissertation, Tohoku Uni. of Japan, 1981
[22]  Goody R M, West R, Chen L, et al. The correlated-k method for radiation calculations in nonhomogeneous atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 1989, 42: 539~550
[23]  Lacis A A, Oinas V. A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 1991, 96: 9027~9063
[24]  Fu Q, Liou K N. On the correlated k distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 1992, 49: 2139~2156
[25]  Zhang H, Shi G Y. Numerical explanation for accurate radiative cooling rates resulting from the correlated k distribution hypothesis. J. Quant. Spectrosc. Radiat. Transfer, 2002, 74: 299~306
[26]  Shi G Y. Effect of atmospheric overlapping bands and their treatment on the calculation of thermal radiation. Adv. Atmos. Sci., 1984, 1: 246~255
[27]  王标. 气候模拟中的辐射传输模式. 中国科学院大气物理研究所博士论文, 1996Wang Biao. On the radiative transfer model for climate simulation. Ph.D. dissertation (in Chinese), the Institute of Atmospheric Physics, Chinese Academy of Sciences, 1996
[28]  Wang B, Liu H, Shi G Y. Radiation and cloud scheme. IAP Global Ocean-Atmosphere-Land System Model. Zhang Xuehong, et al., Eds. Beijing: Science Press, 2000, 28~49
[29]  Han Y, Shaw J A, Churnside J H, et al. Infrared spectral radiance measurements in the tropical Pacific atmosphere. J. Geophys. Res., 1997, 102: 4353~4356
[30]  Tobin D C, Best F A, Brown P D, et al. Downwelling spectral radiance observations at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 m. J. Geophys. Res., 1999, 104 (D2): 2081~2092
[31]  Rothman L S, Rinsland C P, Goldman A, et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation). http: //www.hitran.com/, Updated HITRAN\'2000, 2003
[32]  石广玉. 论大气辐射计算中的k-分布方法. 大气科学, 1998, 22: 659~676Shi Guangyu. On the correlated k-distribution method. Chinese Journal of Atmospheric Sciences (in Chinese), 1998, 22: 659~676
[33]  Zhang H, Shi G Y. An improved approach to diffuse radiation. J. Quant. Spectrosc. Radiat. Transfer, 70: 367~372, 2001
[34]  Nakajima T, Tanaka M. Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 1986, 35: 13~21
[35]  Joseph J H, Wiscombe W J, Weinman J A. The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 1976, 33: 2452~2459
[36]  Plass G N, Kattawar G W, Catchings F E. Matrix operatror theory of radiative transfer. 1. Rayleigh scattering. Appl. Opt., 1973, 12: 314~329

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133