全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2005 

一次华北强对流风暴的中尺度特征分析

DOI: 10.3878/j.issn.1006-9895.2005.03.13

Keywords: 强对流风暴中尺度重力波数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用非静力平衡模式(MM5v3.5)对2001年8月23日影响华北地区的一次强对流风暴成功模拟的基础上,对其中的中尺度重力波系(MGWs)特征进行分析,并与美国中东部地区MGWs进行比较.结果表明:这次MGWs波长约为100~120km,相速约为21~28m·s-1,伴随对流风暴的发展维持时间超过6h.太行山地形强迫和对流是产生MGWs的重要机制,虽然大气层结并不经常具有波导机制,但在地形强迫、对流和切变气流提供波动能量情况下,低层MGWs仍可维持较长时间.太行山触发的华北MGWs与美国西部高原引发的中东部地区MGWs具有相似的地形作用特征.在对流初始发生和对流单体合并阶段,对流和MGWs构成一个类似正反馈机制的耦合系统,wave-CISK机制可能发挥着重要作用;成熟阶段的对流风暴,由于中高层潜热释放和湿下沉气流加强,波动传播加快,引起MGWs和对流风暴分离并减弱.MGWs在触发新雷暴,并将其组织成带状对流系统过程中可发挥一定作用.上述现象较好地验证了MGWs的概念模型以及对流与重力波相互作用的理论.

References

[1]  吴池胜.地形对重力惯性波发展的影响[J].大气科学,1994,18(1):81-88,.
[2]  朱民 余志豪.中尺度地形背风波的作用及其应用[J].气象学报,1999,57(6):705-714,.
[3]  Koch S E, Robert E G, Paul B D. A mesoscale gravity wave event observed during CCOPE. Part Ⅱ: Interactions between mesoscale convective systems and the antecedent waves. Mon. Wea. Rev., 1988, 116 (12): 2545~2569.
[4]  Koch S E, Dorian P B. A mesoscale gravity wave event observed during CCOPE. Part Ⅲ: Wave environment and probable source mechanisms. Mon. Wea. Rev., 1988, 116 (12): 2570~2592.
[5]  Rauber R M, Yang Muqun, Ramamurthy M K, et al. Origin, evolution, and finescale structure of the St. Valentine\\'s Day mesoscale gravity wave observed during STORM-FEST. Part Ⅰ: Origin and evolution. Mon. Wea. Rev., 2001, 129 (2): 198~217.
[6]  Uccellini L W, Koch S E. The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rew., 1987, 115 (3): 721~729.
[7]  Kock S E, O\\'Handley C. Operational foecasting and detection of mesoscale gravity wave. Wea. Forcasting, 1997, 12 (2): 253~281.
[8]  Zhang Dalin, Fritsch J M. Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part Ⅲ: Internal gravity and squall line. Journal of the Atmospheric Sciences, 1988, 45 (7): 1252~1268.
[9]  Stobie J G, Franco Einaudi. A case study of gravity waves-convective storms interaction: 9 May 1979. Journal of the Atmospheric Sciences, 1983, 40 (12): 2804~2830.
[10]  张可苏 周晓平.非静力平衡条件下大气重力惯性波的频谱、结构和传播特征[A]..第二次全国数值预报会议文集[C].北京:科学出版社,1980.196-206.
[11]  Zhang Fuqing, Koch S E. Numerical simulation of a gravity wave event over CCOPE. Part Ⅱ: Wave generated by an orographic density current. Mon. Wea. Rev., 2000, 128 (8): 2777~2796.
[12]  Koch S E, Siedlarz L M. Mesoscale gravity wave and environment in the central United States during STORM-FEST. Mon. Wea. Rev., 1999, 127 (16): 2854~2879.
[13]  李麦村.重力波对特大暴雨的触发作用[J].大气科学,1978,2(3):201-209.
[14]  林锡怀 钱家声.我国东部沿海地区“高后型飑线”的一种形成机制[J].应用气象学报,1996,7(3):330-335,.
[15]  巢纪平.非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用[J].大气科学,1980,4(3):230-235.
[16]  吴洪 林锦瑞.垂直切变和地形影响下惯性重力波的发展[J].气象学报,1997,55(4):499-505,.
[17]  Powers J G, Reed R J. Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 1993, 121 (8): 2285~2308.
[18]  Zhang Fuqing, Koch S E, Davis C A, et al. Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States. Quarterly Journal of the Royal Meteorological Society, 2001, 127: 2209~2245.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133