全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2005 

时空序列预测误差的敏感性试验分析

DOI: 10.3878/j.issn.1006-9895.2005.02.02

Keywords: 场时间序列敏感性分析误差混沌

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用33模Lorenz系统得到的"理想"混沌时空序列,作为时空混沌序列"发生器".通过状态空间重构,建立"场时间序列"局域近似预测模型,对资料空间分辨率,资料的长度、噪音,以及模型的参数选取等因素进行敏感性试验分析,了解时空混沌序列预测中误差产生和增长的一些影响因素.得到以下初步结论:对于理想混沌时空序列(33模Lorenz系统)而言,与系统相适应的资料空间分辨率和较长的资料长度都将会提高预测精度;可预报时效与资料长度之间近似服从指数关系.另外,在建立预测模型时,适当的邻近点数目,以及采用二阶映射关系和迭代法都可以有效地改善预测精度.对于加入噪音的混沌时间序列,通过"场时间序列"的局域近似方法和4阶自回归方法的预测试验的对比表明,前者显示了更强的抗"干扰"能力.以上结论可以有分析地应用于短期气候预测中.

References

[1]  Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series. Phys. Rev. Lett., 1950, 45:712 - 715.
[2]  Takens F. Detecting strange attractors in turhulence. Dynamical Systems and Turbulence. Springer-Verlag, 1981, 366 - 381.
[3]  Farmer J D, Sidorowich J. Predicting chaotic time series. Phys. Rev.Lett., 1987, 59:845 - 848.
[4]  Casdagli M. Nonlinear prediction of chaotic time series. Physica D,1989, 35:335 - 356.
[5]  Grassberger P. Do climatic attractors exist. Nature, 1956, 323:609 -612.
[6]  Grassberger P. Evidence for climatic attractors. Nature, 1957, 326:523 - 524.
[7]  Essex C, Lookman T, Nerenberg M A H. The climate attractor over short timescales. Nature, 1957, 326:64 - 66.
[8]  Tsonis A A, Elsner J B. The weather attractor over ve- short time scales. Nature, 1988, 333:545 - 547.
[9]  杨培才.场时间序列、时空混沌和区域预测—混沌时间序列分析的一个新台阶[A]..现代大气科学前沿与展望[C].北京:气象出版社,1997.189-193.
[10]  Ellner S. Detecting low-dimensional chaos in population dynamics data:a critical review. Does Chaos Exist in Ecological System? Univ. Press of Virginia. Charlotteville, VA, 1991, 65- 92.
[11]  Smith L A. Estimating dimension in noisy chaotic time series. J. Roy.Statist. Soc. B., 1992, 54: 329-351.
[12]  Keppenne C L, Nicolis C. Global Properties and Local Structure of the Weather Attractor over western Europe. J. Atmos. Sci., 1959, 46:2356 - 2370.
[13]  Yang Peicai, Brasseur G P, Gine J C, et al. Dimensionalities of ozone attractors and their global distribution. Physica D, 1994, 76:331 - 343.
[14]  Yang Peicai, Zhou Xiuji, Bian Jianchun. A nonlinear regional prediction experiment on a short-range climatic process of the atmospheric ozone. J. Geophys. Res., 2000, 105(D10): 12253- 12258.
[15]  Chen Bomin, Ji Liren, Yang Peicai, et al. An approach to improving the dynamical extended-range ( monthly ) prediction. Chinese Science Bulletin, 2003, 48(7): 696- 703.
[16]  Wang Geli, Yang Peicai, Lu Daren. On spatio-temporal series analysis and its application to predict the regional short term climate process.Advances in Atmospheric Sciences, 2004, 21(2) : 71 - 76.
[17]  王革丽 杨培才 吕达仁.场时间序列预测方法及其预测能力的试验分析[J].大气科学,2004,28(4):536-544,.
[18]  杨培才.33模Lorenz系统的某些总体特征[J].大气科学,1987,11:48-57.
[19]  Lorenz E N. Atmospheric pred ctability experiments with a large numerical model. Tellus, 1982, 34: 505- 513.
[20]  Williamson D L, Kiehl J T, Hack J J. Climate sensitivity of the NCAR community climate model (CCM2) to horizontal resolution. Climate Dyn., 1995, 11:370-397.
[21]  Baumhefner D B. Numerical extended-range prediction: forcast skill using a low-resolution climate model. Mon. Retd. Wea., 1996, 124:1965 - 1980.
[22]  Lorenz E. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20:130- 141.
[23]  Curry J H, Herring J R, Loncaric J, et al. Order and disorder in two and there dimensional Benard convection. J. Fluid Mech.. 1984, 147:1 - 38.
[24]  Eisner J B, Tsonis A A. Nonlinear prediction, chaos and noise.Bulletin of the American Meteorological Society, 1992,73:49 - 60.
[25]  Sugihara G, May R M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 1990, 344:734-741.
[26]  Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed chaotic data in physical systems. Reviews of Modern Physics,1993, 65(4): 1331 - 1392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133