Ellner S. Detecting low-dimensional chaos in population dynamics data:a critical review. Does Chaos Exist in Ecological System? Univ. Press of Virginia. Charlotteville, VA, 1991, 65- 92.
[11]
Smith L A. Estimating dimension in noisy chaotic time series. J. Roy.Statist. Soc. B., 1992, 54: 329-351.
[12]
Keppenne C L, Nicolis C. Global Properties and Local Structure of the Weather Attractor over western Europe. J. Atmos. Sci., 1959, 46:2356 - 2370.
[13]
Yang Peicai, Brasseur G P, Gine J C, et al. Dimensionalities of ozone attractors and their global distribution. Physica D, 1994, 76:331 - 343.
[14]
Yang Peicai, Zhou Xiuji, Bian Jianchun. A nonlinear regional prediction experiment on a short-range climatic process of the atmospheric ozone. J. Geophys. Res., 2000, 105(D10): 12253- 12258.
[15]
Chen Bomin, Ji Liren, Yang Peicai, et al. An approach to improving the dynamical extended-range ( monthly ) prediction. Chinese Science Bulletin, 2003, 48(7): 696- 703.
[16]
Wang Geli, Yang Peicai, Lu Daren. On spatio-temporal series analysis and its application to predict the regional short term climate process.Advances in Atmospheric Sciences, 2004, 21(2) : 71 - 76.
Lorenz E N. Atmospheric pred ctability experiments with a large numerical model. Tellus, 1982, 34: 505- 513.
[20]
Williamson D L, Kiehl J T, Hack J J. Climate sensitivity of the NCAR community climate model (CCM2) to horizontal resolution. Climate Dyn., 1995, 11:370-397.
[21]
Baumhefner D B. Numerical extended-range prediction: forcast skill using a low-resolution climate model. Mon. Retd. Wea., 1996, 124:1965 - 1980.
[22]
Lorenz E. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20:130- 141.
[23]
Curry J H, Herring J R, Loncaric J, et al. Order and disorder in two and there dimensional Benard convection. J. Fluid Mech.. 1984, 147:1 - 38.
[24]
Eisner J B, Tsonis A A. Nonlinear prediction, chaos and noise.Bulletin of the American Meteorological Society, 1992,73:49 - 60.
[25]
Sugihara G, May R M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 1990, 344:734-741.
[26]
Abarbanel H D I, Brown R, Sidorowich J J, et al. The analysis of observed chaotic data in physical systems. Reviews of Modern Physics,1993, 65(4): 1331 - 1392.