Canuto C, Maday Y, Quarteroni A. Combined finite element and spectral approximation of the Navier-Stokes equations. Numer Math ,1984, 44:201 - 217.
[21]
Gao Benyu. Spectral-difference method for baroclinic primitive equation and its error estimation. Scientia Sinica, 1987, 30A: 697 - 713.
[22]
Deville M O, Fischer P F, Mund E H. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, 2002, 499 pp.
[23]
Taylor M, Tribbia J, Iskandarani M. The spectral element method for the shallow water equations on the sphere. J Comput Phys , 1997,130:92 - 108.
[24]
Giraldo F X, Rosmond T E. A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon Wea Rev , 2004, 132:133 - 153.
[25]
Wang H, Tribbia J, Baer F, et al. 2004: Recent development and applications of a spectral element dynamical core. CCSM AMWG Meeting, 9 - 10 March 2004, Boulder, Colorado, USA.
Phillips N A. A coordinate system having some special advantages for numerical forecasting. J Meteor , 1957, 14: 184-185.
[33]
Gal-Chen T, Somerville R. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys ,1975, 17:209 - 228.
[34]
Benjamin S G, Grell G A, Brown J M, et al. Mesoscale weather prediction with the RUC hybrid isentropic-terrain-fonowing coordinate model. Mon Wea Rev , 2004, 132:473 - 494.
[35]
Janjc Z I. Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr Phys Atmos , 1977, 50: 186- 189.
[36]
Mahrer Y. An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system. Mon Wea Rev ,1984, 112:918-922.
[37]
Corby G A, Gilchrist A, Newson R L. A general circulation model of the atmosphere suitable for long period integrations. Quart J Roy Meteor Soc , 1972, 98: 809-832.
[38]
Chen Jiabin, Ji Liren, WuWanli. Design and test of an improved scheme for global spectral model with reduced truncation error. Adv Atmos Sci , 1987, 4: 156- 168.
[39]
Ji Liren, Chen Jiabin, Zhang Daomin, et al. A spectral model for medium weather forecasts and its performance. International Conference on East Asia and Western Pacific Meteorology and Climate, Hong Kong 1989. Sham P. Chang C P. Eds. World Scientific. 1989. 474 - 483.
[40]
Simmons A J, Chen Jiabin. The calculation of geopotential and the pressure gradient in the ECMWF a-mospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses. Quart J Roy Meteor Soc , 1991, 117:29-58.
[41]
Zhang Xuehong. Dynamical framework of IAP nine-level atmospheric general circulation model. Adv Atmos Sci , 1990, 7:67 - 77.
[42]
Zhang Daomin, Li Jinlong, Ji Liren, et al. A global spectral model and test of its performance. Adv Atmos Sci , 1995, 12:67 - 78.
[43]
Qian Y F, Zhong Z. General forms of dynamic equations for atmosphere in numerical models with topography. J Meteor Soc Japan, 1986,Special Volume : 743 - 756.
[44]
Klemp J B, Skamrock W C, Fuhrer O. Numerical consistency of metric terms in terrain-following coordinates. Mon Wea Rev , 2003, 131 :1229- 1239.
[45]
Gallus W A, Klemp J B. Behavior of flow over step orography. Mon Wea Rev , 2000, 128: 1153-1164.
[46]
Mesinger F. A blocking technique for representation of mountains in atmospheric models. Riv Meteor Aeronautica, 1984, 44: 195- 202.
[47]
Egger J. Numerical experiments on the cyclogenesis in the Gulf of Genoa. Beitr Phys Atmos , 1972, 45:320 - 346.
[48]
Laprise R. The Eular equations of motion with hydrostatic pressure as an independent variable. Mon Wea Rev , 1992, 120: 197- 207.
[49]
Schar C, Leuenberger D, Fuhrer O, et al. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Wea Rev , 2002, 130: 2459-2480.
[50]
Phillips N A. The general circulation of the atmosphere: a numerical experiment. Quart J Roy Meteor Soc , 1956, 82: 123-164.
[51]
Orszag S A. On the elimination of aliasing in finite-difference schemes by filtering high-wave number components. J Atmos Sci , 1971,28: 1074- 1082.
[52]
Chen Xiongshan. A high accuracy numerical method for solving the nonlinear Korteweg-de Vries equation. Scientia Sinica, 1980, 3 (1) :75 - 87.
[53]
Chen Xiongshan. The aliased and the dealiased spectral models of the shallow-water equations. Mon Wea Rev , 1993, 121: 834-852.
[54]
Chen Xiongshan. Use of the aliased spectral model in numerical weather prediction. Mon Wea Rev 1997, 125: 2998-3007.
[55]
Arakewa A. Computational design for long-term numerical integration of the equations of fluid motion : two dimensional incompressible flow. Part Ⅰ. J Comput Phys , 1: 119-143.
[56]
Arakewa A. Numerical simulation of large-scale atmospheric motions. Numerical Solution of Field Problem in Continuum Physics. Proc Symp Math , Duham, N C 1968, SIAM-AMS Proc , 1970, 224 - 40.
[57]
Arakewa A, Lamb V R. Computational design of the UCLA general circulation model. Methods in Computational Physics, 1977, 17:174- 267.
[58]
Lilly D K. On the computational stability of numerical solutions of timedependent non-linear geophysical fluid dynamics problems. Mon Wea Rev , 1965, 93:11-26.
[59]
Mousseau V A, KNOLL D A, Reisher J M. An implicit nonlinearly consistent method for the two-dimensional shallow-water equations with Coriolis force. Mon Wea Rew , 2002, 130: 2611- 2625.
[60]
Knoll D A, Keges D E. Jacobean-free Newton-Krylov methods: a survey of approaches and application. J Comput Phys , 2004,193:357 - 397.
[61]
Robert A. A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean, 1981, 19: 35- 46.
[62]
Robert A. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J Meteor. Soc Japan, 1982, 60: 319- 325.
[63]
Machenhauer B, Olk M. The implementation of the semi-implicit scheme in cell-integrated semi-Lagrangian models. Max-Planck-Institut fur Meteorologie, 1995, Rep. No. 156: 1- 32.
[64]
Nair R, Machenhauer B. The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon Wea Rev , 2002,130: 649- 667.
[65]
Colella P, Woodward P R. Piecewise parabolic method for gas dynamical simulations. J Comput Phys , 1984, 54:174-201.
[66]
Carpenter R L, Droegemeier P, Woodward R, et al. Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon Wea Rev , 1990, 118:586 - 612.
[67]
Rancic M. Semi-Lagrangian piecewise biparabolic scheme for twodimensional horizontal of a passive scalar. Mon Wea Rev , 1992,120:1394 - 1406.
[68]
Xiao F. A class of Single-cell high-order semi-Lagrangian advection schemes. Mon Wea Rev , 2002, 128:1165 - 1176.
[69]
Maehenhauer B. The spectral methods. GARP publication series No.17, 1979, Vol. Ⅱ: 124- 275.
[70]
Temperton C. Can spectral methods on the sphere live forever? Proceedings ECMWF Workshop on Developments in Numerical Methods for very High Resolution Global Methods. 2000, 161 - 166.