全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2005 

数值预报模式动力框架发展的若干问题综述

DOI: 10.3878/j.issn.1006-9895.2005.01.14

Keywords: 模式地形处理守恒格式谱模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

作者就大气数值模式动力框架发展的几个问题做了回顾和展望.关于模式地形的处理,讨论了"地形追随"(terrain-following)坐标和"台阶地形"(step-mountain)η坐标的优点、问题和对策.关于物理量守恒格式的构造,回顾了从"瞬时"守恒到隐式、显示和半隐式完全(包括时间离散)守恒格式的发展和近况,介绍了加速非线性全隐式问题迭代收敛的途径.还讨论了半拉格朗日守恒格式的构造问题.最后,对目前广泛使用的全球谱模式,讨论了其长处、局限和发展前景,并简单介绍了谱元方法.

References

[1]  叶笃正 罗四维.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报,1957,28(2):.
[2]  曾庆存 季仲贞.发展方程的计算稳定性问题[J].计算数学,1981,3(1):79-86.
[3]  季仲贞.Arakawa格式非线性计算不稳定的例子[J].气象学报,1981,39(2):237-239.
[4]  季仲贞.二维Lilly格式中非线性计算不稳定的例子[J].科学通报,1980,25(9):890-892.
[5]  王斌 季仲贞.显式完全平方守恒差分格式的构造及其初步检验[J].科学通报,1990,35(10):766-768.
[6]  季仲贞 王斌.再论发展方程差分格式的构造和应用[J].大气科学,1991,15(2):1-10,.
[7]  叶笃正 李麦村.中小尺度运动中风场和气压场的适应[J].气象学报,1964,34:309-423.
[8]  顾震潮.作为初值问题的天气形势数值预报与由地面天气历史演变作预报的等值性[J].气象学报,1958,29(2):93-98.
[9]  宇如聪 彭贵康.“雅安天漏”研究:Ⅱ.数值预报试验[J].大气科学,1994,18(5):535-551,.
[10]  纪立人.江淮切变线形成过程的数值分析[J].气象学报,1965,35(1):18-33.
[11]  陈嘉滨 舒静君.大气谱模式中质量守恒格式的研究[J].大气科学,1996,20(2):169-180,.
[12]  陈嘉滨 高学杰.质量守恒律在国家气候中心气候谱模式中的应用[J].大气科学,2000,24(5):608-614,.
[13]  曾庆存.大气运动的特征参数和动力学方程[J].气象学报,1963,33(4):472-483.
[14]  钟青.长效,经济的发展问题保真计算格式反演补偿[J].科学通报,1993,38(12):1101-1105,.
[15]  陈嘉滨 季仲贞.半拉格朗日平方守恒计算格式的研究[J].大气科学,2001,25(6):837-846,.
[16]  叶笃正.西藏高原对大气环流影响的季节变化[J].气象学报,1952,22:33~47.
[17]  数值预报研究组.近年来大气环流数值试验的进展[A].见:中国科学院大气物理研究所编著.近代气象学若干问题的进展[C].北京:科学出版社,1975.1-45.
[18]  张学洪 许有丰 骆美霞 等.初始方程模式引入地形后的初步试验[A]..第二次全国数值天气预报会议论文集[C].北京:科学出版社,1980.87-97.
[19]  曾庆存.数值天气预报的数学物理学方程(第一卷)[M].北京:科学出版社,1979.22-25.
[20]  Canuto C, Maday Y, Quarteroni A. Combined finite element and spectral approximation of the Navier-Stokes equations. Numer Math ,1984, 44:201 - 217.
[21]  Gao Benyu. Spectral-difference method for baroclinic primitive equation and its error estimation. Scientia Sinica, 1987, 30A: 697 - 713.
[22]  Deville M O, Fischer P F, Mund E H. High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, 2002, 499 pp.
[23]  Taylor M, Tribbia J, Iskandarani M. The spectral element method for the shallow water equations on the sphere. J Comput Phys , 1997,130:92 - 108.
[24]  Giraldo F X, Rosmond T E. A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon Wea Rev , 2004, 132:133 - 153.
[25]  Wang H, Tribbia J, Baer F, et al. 2004: Recent development and applications of a spectral element dynamical core. CCSM AMWG Meeting, 9 - 10 March 2004, Boulder, Colorado, USA.
[26]  曾庆存 袁重光 张学洪 等.-个大气环流模式分解格式的试验[J].气象学报,1985,43:441-449.
[27]  韩卫清 纪立人.正压原始方程有限区域谱模式的预报试验[J].气象学报,1991,49(4):469-482,.
[28]  宇如聪 徐幼平.AREM及其对2003年汛期降水的模拟[J].气象学报,2004,62(6):715-724,.
[29]  左瑞亭 曾庆存 张铭.季风及季风与西风带相互关系的数值模拟研究[J].大气科学,2004,28(1):7-22,.
[30]  钟青.论发展问题保真计算格式的一般构造原理...[J].计算物理,1992,9(A02):758-764,.
[31]  陈嘉滨 季仲贞.半隐式半拉格朗日平方守恒计算格式的构造[J].大气科学,2004,28(4):527-535,.
[32]  Phillips N A. A coordinate system having some special advantages for numerical forecasting. J Meteor , 1957, 14: 184-185.
[33]  Gal-Chen T, Somerville R. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys ,1975, 17:209 - 228.
[34]  Benjamin S G, Grell G A, Brown J M, et al. Mesoscale weather prediction with the RUC hybrid isentropic-terrain-fonowing coordinate model. Mon Wea Rev , 2004, 132:473 - 494.
[35]  Janjc Z I. Pressure gradient force and advection scheme used for forecasting with steep and small scale topography. Beitr Phys Atmos , 1977, 50: 186- 189.
[36]  Mahrer Y. An improved numerical approximation of the horizontal gradients in a terrain-following coordinate system. Mon Wea Rev ,1984, 112:918-922.
[37]  Corby G A, Gilchrist A, Newson R L. A general circulation model of the atmosphere suitable for long period integrations. Quart J Roy Meteor Soc , 1972, 98: 809-832.
[38]  Chen Jiabin, Ji Liren, WuWanli. Design and test of an improved scheme for global spectral model with reduced truncation error. Adv Atmos Sci , 1987, 4: 156- 168.
[39]  Ji Liren, Chen Jiabin, Zhang Daomin, et al. A spectral model for medium weather forecasts and its performance. International Conference on East Asia and Western Pacific Meteorology and Climate, Hong Kong 1989. Sham P. Chang C P. Eds. World Scientific. 1989. 474 - 483.
[40]  Simmons A J, Chen Jiabin. The calculation of geopotential and the pressure gradient in the ECMWF a-mospheric model: Influence on the simulation of the polar atmosphere and on temperature analyses. Quart J Roy Meteor Soc , 1991, 117:29-58.
[41]  Zhang Xuehong. Dynamical framework of IAP nine-level atmospheric general circulation model. Adv Atmos Sci , 1990, 7:67 - 77.
[42]  Zhang Daomin, Li Jinlong, Ji Liren, et al. A global spectral model and test of its performance. Adv Atmos Sci , 1995, 12:67 - 78.
[43]  Qian Y F, Zhong Z. General forms of dynamic equations for atmosphere in numerical models with topography. J Meteor Soc Japan, 1986,Special Volume : 743 - 756.
[44]  Klemp J B, Skamrock W C, Fuhrer O. Numerical consistency of metric terms in terrain-following coordinates. Mon Wea Rev , 2003, 131 :1229- 1239.
[45]  Gallus W A, Klemp J B. Behavior of flow over step orography. Mon Wea Rev , 2000, 128: 1153-1164.
[46]  Mesinger F. A blocking technique for representation of mountains in atmospheric models. Riv Meteor Aeronautica, 1984, 44: 195- 202.
[47]  Egger J. Numerical experiments on the cyclogenesis in the Gulf of Genoa. Beitr Phys Atmos , 1972, 45:320 - 346.
[48]  Laprise R. The Eular equations of motion with hydrostatic pressure as an independent variable. Mon Wea Rev , 1992, 120: 197- 207.
[49]  Schar C, Leuenberger D, Fuhrer O, et al. A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Wea Rev , 2002, 130: 2459-2480.
[50]  Phillips N A. The general circulation of the atmosphere: a numerical experiment. Quart J Roy Meteor Soc , 1956, 82: 123-164.
[51]  Orszag S A. On the elimination of aliasing in finite-difference schemes by filtering high-wave number components. J Atmos Sci , 1971,28: 1074- 1082.
[52]  Chen Xiongshan. A high accuracy numerical method for solving the nonlinear Korteweg-de Vries equation. Scientia Sinica, 1980, 3 (1) :75 - 87.
[53]  Chen Xiongshan. The aliased and the dealiased spectral models of the shallow-water equations. Mon Wea Rev , 1993, 121: 834-852.
[54]  Chen Xiongshan. Use of the aliased spectral model in numerical weather prediction. Mon Wea Rev 1997, 125: 2998-3007.
[55]  Arakewa A. Computational design for long-term numerical integration of the equations of fluid motion : two dimensional incompressible flow. Part Ⅰ. J Comput Phys , 1: 119-143.
[56]  Arakewa A. Numerical simulation of large-scale atmospheric motions. Numerical Solution of Field Problem in Continuum Physics. Proc Symp Math , Duham, N C 1968, SIAM-AMS Proc , 1970, 224 - 40.
[57]  Arakewa A, Lamb V R. Computational design of the UCLA general circulation model. Methods in Computational Physics, 1977, 17:174- 267.
[58]  Lilly D K. On the computational stability of numerical solutions of timedependent non-linear geophysical fluid dynamics problems. Mon Wea Rev , 1965, 93:11-26.
[59]  Mousseau V A, KNOLL D A, Reisher J M. An implicit nonlinearly consistent method for the two-dimensional shallow-water equations with Coriolis force. Mon Wea Rew , 2002, 130: 2611- 2625.
[60]  Knoll D A, Keges D E. Jacobean-free Newton-Krylov methods: a survey of approaches and application. J Comput Phys , 2004,193:357 - 397.
[61]  Robert A. A stable numerical integration scheme for the primitive meteorological equations. Atmos Ocean, 1981, 19: 35- 46.
[62]  Robert A. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J Meteor. Soc Japan, 1982, 60: 319- 325.
[63]  Machenhauer B, Olk M. The implementation of the semi-implicit scheme in cell-integrated semi-Lagrangian models. Max-Planck-Institut fur Meteorologie, 1995, Rep. No. 156: 1- 32.
[64]  Nair R, Machenhauer B. The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon Wea Rev , 2002,130: 649- 667.
[65]  Colella P, Woodward P R. Piecewise parabolic method for gas dynamical simulations. J Comput Phys , 1984, 54:174-201.
[66]  Carpenter R L, Droegemeier P, Woodward R, et al. Application of the piecewise parabolic method (PPM) to meteorological modeling. Mon Wea Rev , 1990, 118:586 - 612.
[67]  Rancic M. Semi-Lagrangian piecewise biparabolic scheme for twodimensional horizontal of a passive scalar. Mon Wea Rev , 1992,120:1394 - 1406.
[68]  Xiao F. A class of Single-cell high-order semi-Lagrangian advection schemes. Mon Wea Rev , 2002, 128:1165 - 1176.
[69]  Maehenhauer B. The spectral methods. GARP publication series No.17, 1979, Vol. Ⅱ: 124- 275.
[70]  Temperton C. Can spectral methods on the sphere live forever? Proceedings ECMWF Workshop on Developments in Numerical Methods for very High Resolution Global Methods. 2000, 161 - 166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133