Robert A.A semi-lagrangian semi-implicit numerical integration scheme for the primitive meteorological equation.J.Japan Meteor.Soc.,1982,60:319~325
[4]
Mousseau V A,Knoll D A,Reisner J M.An implicit nonlinearly consistent method for the two-dimensional shallow-water equation with Coriolis force.Mon.Wea.Rev.,2002,130:2611~2625
[5]
曾庆存,季仲贞.发展方程的计算稳定性问题.计算数学,1981,1:79~86 Zeng Qingcun,Ji Zhongzhen.On the computational stability of evolution equation.Chinese Computational Mathematics (in Chinese),1981,1:79~86
[6]
Brown P,Saad Y.Hybrid Krylov methods for nonlinear systems of equations.SIAM,Sci.Stat.Comput.,1990,11:450~481
[7]
Knoll DA,Keyes D E.Jacobin-free Newton-Krylov methods:A survey of approaches and applications.J.Comp.Phys.,2004,193:357~397
[8]
Saad Y.Iterative Methods for Sparse Linear Systems.PWS Publishing,1996.447 pp
[9]
Chan T F,Jackson K R.Nonlinearly preconditioned Krylov subspace methods for discrete Newton algorithms.SIAM J.Sci.Stat.Comput.,1984,5:533~542
[10]
Gal-Chen T,Somerville R C J.On the use of a coordinate transform for the solution of the Navier-Stokes equation.J.Comput.Phys.,1975,17:209~228
[11]
Reisner J M,Wyszogrodzki A A,Moussean V A,et al.An implicitly balanced hurricane model with physics-based preconditioning.Mon.Wea.Rev.,2005,133:1003~1022