全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2006 

用非线性最优化方法研究ElNi?o可预报性的进展与前瞻

DOI: 10.3878/j.issn.1006-9895.2006.05.05

Keywords: 非线性,ElNi?o,可预报性,非线性优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

综述用非线性优化方法研究厄尔尼诺(ElNi(n)o)-南方涛动(ENSO)事件可预报性的进展.针对ENSO可预报性研究中的热点问题--"前期征兆"、"春季可预报性障碍",以及如何量化研究ENSO可预报性和ENSO的不对称性问题,作者在近年来的工作中先后用理论模式和中等复杂程度ENSO模式研究了ENSO可预报性的动力学,揭示了ENSO的若干重要非线性特征.主要结果如下:(1)条件非线性最优扰动(CNOP)(局部CNOP)比线性奇异向量更易发展成ENSO事件,扮演了ENSO的最优前期征兆.这些ENSO事件关于气候平均态是不对称的.理论分析表明,非线性温度平流过程是造成这种不对称性的重要原因.1980~2002年的海洋再分析资料验证了上述理论结果.(2)ENSO事件CNOP型初始误差的发展有明显的季节依赖性,该误差导致了ENSO事件最显著的春季可预报性障碍(SPB)现象.ENSO事件SPB的发生不仅依赖于气候平均态,而且依赖于ENSO事件本身及其初始误差模态,是三者综合作用的结果.(3)建立了关于ENSO可预报性的最大可预报时间下界、最大预报误差上界和最大允许初始误差下界的三类可预报性问题,分别从三个方面揭示了ENSO事件的春季可预报性障碍现象,比较有效地量化了其可预报性.(4)通过CNOP方法,揭示了非线性温度平流在年代际尺度ENSO不对称性研究中的重要作用,解释了ENSO不对称性的年代际变化,基于所用ENSO模式给出了ENSO不对称性年代际变化的机制.最后,展望了非线性优化方法在ENSO可预报性中应用的前景,并期望该方法能拓展到ENSO第二类可预报性问题的研究中.

References

[1]  李崇银.气候动力学引论.北京:气象出版社,1995.461ppLi Chongyin.Introduction of Climate Dynamics (in Chinese).Beijing:China MeteorologicalPress,1995.461pp
[2]  黄荣辉.我国气候灾害的特征、成因和预测研究进展.中国科学院院刊,1999,3:188~192Huang Ronghui.Advance of the studies of the characteristics,cause of formation,andprediction study for climate disaster in China.Chinese Academy of Sciences Bulletin (inChinese),1999,3:188~192
[3]  Mcphaden M J..Tropical Pacific Ocean heat content variations and ENSO persistencebarriers.Geophy.Res.Lett.,2003,30:doi:10.1029/2003GL016872
[4]  Webster P J,Yang S.Monsoon and ENSO:Selectively interactivesystems.Quart.J.Roy.Meteor.Soc.,1992,118:877~926
[5]  Webster P J.The annual cycle and the predictability of the tropical coupledocean-atmosphere system.Meteor.Atmos.Phys.,1995,56:33~55
[6]  Moore A M,Kleeman R.The dynamics of error growth and predictability in a coupled modelof ENSO.Quart.J.Roy.Meteor.Soc.,1996,122:1405~1446
[7]  Xue Y,Cane M A,Zebiak S E.Predictability of a coupled model of ENSO using singularvector analysis.Part I:Optimal growth in seasonal background and ENSOcycles.Mon.Wea.Rev.,1997,125:2043~2056
[8]  Xue Y,Cane M A,Zebiak S E,et al.Predictability of a coupled model of ENSO usingsingular vector analysis.Part II:Optimal growth and forecastskill.Mon.Wea.Rev.,1997,125:2057~2073
[9]  Thompson C J.Initial conditions for optimal growth in a coupled ocean-atmosphere modelof ENSO.J.Atmos.Sci.,1998,55:537~557
[10]  An S I,Wang B.Interdecadal change of the structure of the ENSO mode and its impact onthe ENSO frequency.J.Climate,2000,13:2044~2055
[11]  Samelson R M,Tziperman E.Instability of the chaotic ENSO:The growth-phasepredictability barrier.J.Atmos.Sci.,2001,58:3613~3625
[12]  An S I,Jin F F.Nonlinearity and asymmetry of ENSO.J.Climate,2004,17:2399~2412
[13]  An S I.Interdecadal changes in the El Ni(n)o-La Niaasymmetry.Geophys.Res.Lett.,2004,31:L23210,doi:10.1029/2004GL021699
[14]  Chen D,Zebiak S E,Busalacchi A J,et al.An improved procedure for El Ni(n)oforecasting:Implications for predictability.Science,1995,269:1699~1702
[15]  Wang B,Fang Z.Chaotic oscillation of tropical climate:A dynamic system theory forENSO.J.Atmos.Sci.,1996,53:2786~2802
[16]  Wang B,Barcilon A,Fang Z.Stochastic dynamics of El Ni(n)o-SouthernOscillation.J.Atmos.Sci.,1999,56:5~23
[17]  Chen D,Cane M A,Kaplan A,et al.Predictability of El Ni(n)o over the past 148years.Nature,2004,428:733~736
[18]  Mu M.Nonlinear singular vectors and nonlinear singular values.Science inChina.(D),2000,43:375~385
[19]  Mu M,Duan W S,Wang B.Conditional nonlinear optimal perturbation and itsapplications.Nonlinear Processes in Geophysics,2003,10:493~501
[20]  Mu M,Duan W S.A new approach to studying ENSO predictability:conditional nonlinearoptimal perturbation.Chinese.Sci.Bull.,2003,48:1045~1047
[21]  段晚锁.非线性最优化方法在ENSO可预报性研究中的应用.中国科学院大气物理研究所博士学位论文,2003.120ppDuan Wansuo.Applications of nonlinear optimization method in the studies of ENSOpredictability.Ph.D.Dissertation (in Chinese).Institute of Atmospheric Physics,ChineseAcademy of Sciences,2003.120pp
[22]  Duan W S,Mu M,Wang B.Conditional nonlinear optimal perturbation as the optimalprecursors for El Ni(n)o-Southern Oscillationevents.J.Geophy.Res.,2004,109:D23105,doi:10.1029/2004JD004756
[23]  Duan W S,Mu M.Applications of nonlinear optimization method to numerical studies ofatmospheric and oceanic sciences.Appl.Math.Mech.,2005,26:636~646
[24]  Mu M,Duan W S,Wang B.The seasonal dependence of error growth and the dynamics ofpredictability in a theoretical coupled ENSO model.J.Geophys.Res.2005,In revising
[25]  穆穆,段晚锁.条件非线性最优扰动及其在天气和气候可预报性研究中的应用.科学通报,2005,50:2695~2701Mu M,Duan W S.Conditional nonlinear optimal perturbation and its applications to thestudies of weather and climate predictability.Chinese Science Bulletin,2005,50:2401~2407
[26]  徐辉.Zebiak-Cane ENSO预报模式的可预报性问题研究.中国科学院大气物理研究所博士学位论文.2006.145ppXu Hui.Studies of predictability problems for Zebiak-Cane ENSO forecastmodel.Ph.D.Dissertation (in Chinese).Beijing:Institute of Atmospheric Physics,ChineseAcademy of Sciences,2006.145pp
[27]  Zebiak S E,Cane M A.A model El Ni(n)o-Southern Oscillation.Mon.Wea.Rev.,1987,115:2262~2278
[28]  Mu M,Duan W S,Wang J C.The predictability problems in numerical weather and climateprediction.Adv.Atmos.Sci.,2002,19:191~204
[29]  Hao Z,Ghil M.Data assimilation in a simple tropical ocean model with wind stresserrors.J.Phys.Oceanogr.,1994,24:2111~2128
[30]  Flügel M,Chang P.Impacts of dynamical and stochastic processes on thepredictability of ENSO.Geophys.Res.Lett.1996,23:2089~2092
[31]  Liu Z Y.A simple model study of ENSO suppression by external periodicforcing.J.Atmos.Sci.,2002,15:1088~1098
[32]  Zhang L,Flügel M,Chang P.Testing the stochastic mechanism for low-frequencyvariations in ENSO predictability.Geophys.Res.Lett.,2003,30:doi:10.1029 /2003GL017505
[33]  Zavala-Garay J,Moore A M,Kleeman R.Influence of stochastic forcing on ENSOprediction.J.Geophys.Res.,2004,109:C11007,doi:10.1029/2004JC002406
[34]  Williams P D.Modelling climate change:the role of unresolved processes.Royal Societyof London Transactions (Series A),2005,363:2931~2946
[35]  范新岗,丑纪范.提为反问题的数值预报方法与试验 I.三类反问题及数值解法.大气科学,1999,23:543~550Fan Xingang,Chou Jifan.Methods and experiments of numerical prediction raised as inverseproblem.Part I:Three kinds of inverse problems and numerical solutions.Chinese J.Atmos.Sci(in Chinese).,1999,23:543~550
[36]  Grimstad A A,Mannseth T,Nvdal G,et al.Adaptive multiscale permeabilityestimation.Computational Geosciences,2003,7:1~25
[37]  Duan W S,Mu M.Applications of nonlinear optimization method to quantifying thepredictability of numerical model for El Ni(n)o-Southern Oscillation.Progress in NaturalScience,2005,15:915~921
[38]  Duan W S,Mu M.Investigating decadal variability of ENSO asymmetry by conditionalnonlinear optimal perturbation.J.Geophys.Res.,2006,111:C07015,doi:10.102912005 JC003458
[39]  Mu M,Zhang Z Y.Conditional nonlinear optimal perturbation of a barotropicmodel.J.Atmos.Sci.,2006,63:1587~1604
[40]  Powell M J D.VMCWD:A FORTRAN subroutine for constrained optimization.Report DAMTP1982/NA4.England:University of Cambridge,1982
[41]  Birgin E G,Martinez J M,Raydan M.Nonmonotone spectral projected gradient methods onconvex sets.SIAM Journal on Optimization,2000,10:1196~1211

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133