全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2008 

一个动态植被模型在欧洲森林碳水循环模拟中的适应性评估研究

DOI: 10.3878/j.issn.1006-9895.2008.06.12

Keywords: 动态全球植被模型,M\|SDGVM评估,欧洲通量监测网,碳水通量

Full-Text   Cite this paper   Add to My Lib

Abstract:

对动态全球植被模型M-SDGVM(ModifiedSheffieldDynamicGlobalVegetationModel),在1996~1998年15个欧洲森林通量站碳通量和水汽通量的季节和年际变化进行模拟和评估研究,总的来说,模型能够合理再现各个站点春、夏季节碳的吸收,秋、冬季节碳的释放,以及水汽释放的季节变化趋势,其中,对水汽通量的模拟更为理想。对模型的上述适应性评估研究表明,改进后的M-SDGVM有能力研究不同气候条件下欧洲森林生态系统碳、水循环过程及其响应机制,但是,模型对部分站点的模拟仍存在不确定性,通过对这些偏差及其可能的产生机理进行分析,有助于模型的进一步发展和应用研究。

References

[1]  王绍武.气候系统引论(第一版)[M].北京:气象出版社,1994.250pp.
[2]  IPCC. Climate Change 2001 : The Scientific Basis. http: // www. grida. no/climate/ipcc_tar/wgl/index. html
[3]  秦大河 丁一汇 苏纪兰 等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005,1(1):4-9.
[4]  方精云.全球生态学--气候变化与生态响应[M].北京:高等教育出版社,Herdelberg:施普林格出版社,2000.168-172.
[5]  陈泮勤.地球系统碳循环[M].北京:科学出版社,2004.
[6]  于贵瑞 张雷明 孙晓敏 李正泉 伏玉玲.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学:D辑,2004,34(增刊Ⅱ):15—29.
[7]  孙菽芬.陆面过程的物理、生化机理和参数化模型[M].北京:气象出版社,2005.307pp.
[8]  彭少麟 张桂莲 柳新伟.生态系统模拟模型的研究进展[J].热带亚热带植物学报,2005,13(1):85-94.
[9]  曹明奎 李克让.陆地生态系统与气候相互作用的研究进展[J].地球科学进展,:.
[10]  郭建侠 卞林根 戴永久.在华北玉米生育期观测的16m高度CO2浓度及通量特征[J].大气科学,2007,31(4):695-707.
[11]  毛嘉富 王斌 丹利 等.新一代格点大气环流模式与陆面生态模式AVIM的耦合研究[J].大气科学,2005,29(6):897-910.
[12]  MaoL-X(毛留喜) SunY-L(孙艳玲) YanX-D(延晓冬).Modeling of carbon cycling in terrestrial ecosystem:A review[J].应用生态学报,2006,17(11):2189-2195.
[13]  Cramer W, Bondeau A, Woodward F I, et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 2001, 7: 357-373
[14]  Prentice I C, Bondeau A, Cramer W, et al. Dynamic global vegetation modeling: Quantifying terrestrial ecosystem responses to large-scale environmental change Terrestrial Ecosystems in a Changing World, Canadell J G, Pataki D E, Pitelka L F, Eds. Berlin: The IGBP Series, Springer-Verlag, 2006. 336pp
[15]  毛嘉富 王斌 戴永久.陆地生态系统模型及其与气候模式耦合的回顾[J].气候与环境研究,2006,11(6):763-771.
[16]  Foley J A, Levis S, Costa M H, et al. Incorporating dynamic vegetation cover within global climate models. Ecological Applications, 2000, 10 (6) : 1620-1632
[17]  Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408:184-187
[18]  Peng C H. From static biogeographical model to dynamic global vegetation model: A global perspective on modelling vegetation dynamics. Ecological Modelling, 2000, 135 : 33-54
[19]  .[EB/OL].http://daad. esd. ornl. gov/FLUXENT,.
[20]  Baldocchi D, Falge E, Gu L, et al. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Arner. Meteor. Soc. , 2001, 82: 2415-2434
[21]  Valentini R. Fluxes of Carbon, Water and Energy of European Forests. Heidelberg: Springer-Verlag, 2002. 260pp
[22]  Morales P, Skies M T, Prentice I C, et al. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11 , 2211-2233
[23]  Woodward F I, Lomas M R. Vegetation dynamics-simulating responses to climatic change. Biological Reviews, 2004, 79:643-670
[24]  Mao Jiafu, Wang Bin, Dai Yongjiu, et al. Improvements of a dynamic global vegetation model and simulations of carbon and water at an upland-oak forest. Advances in Atmospheric Sciences, 2007, 24:311-322
[25]  毛嘉富.[D].中国科学院大气物理研究所,2006.
[26]  Leuning R, Monerieff J. Eddy-covarianee CO2 flux measurements using open- and closed-path CO2 analysers: Corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Bound.-Layer Meteor. , 1990, 53: 63-76
[27]  Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for long term energy flux data sets, a short communication. Agricultural and Forest Meteorology, 2001, 107:71-77
[28]  Mitchell T D, Jones P D. An improved method of constructing a database of monthly climate observations and associated high-resolutiongrids. Int. J. Climatol., 2005, 25: 693-712
[29]  Kichlighter D W, Bruno M, Donges S, et al. A first-order analysis of the potential role of the potential role of CO2 fertilization to affect the global carbon budget: A comparison of four terrestrial biosphere models. Tellus, 1999, 51B: 343-366
[30]  Graeia C A, Tello E, Sabate S, et al. GOTILWA: An integrated model of water dynamics and forest growth. Ecology of Mediterranean Evergreen Oak Forests, Roda F, Reatana J, Graeia C A, et al. , Eds. Berlin: Springer-Verlag, 1999. 163-180
[31]  White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions, 2000, 4:1-85
[32]  Beven K, Kirkby M J, Schoffield N, et al. Testing a physically-based flood foreeasting model (TOPMODEL) for three UK eatchments. J. Hydrol. , 1984, 69: 119-143
[33]  Smith B, Prentice I C, Sykes M T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecology and Biogeography, 2001, 10: 621-637
[34]  Hickler T, Smith B, Sykes M T, et al. Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 2004, 85:519-530
[35]  Krinner G, Viovy N, de Noblet-Ducoudre N, et al. A dynamic global vegetation model for studies of the coupled atmosphere - biosphere system. Global Biogeochemical Cycles, 2005, 19:. GB1015, doi: 10. 1029/2003GB002199
[36]  Hanson P J, Amthor J S, Wullschleger S D, et al. Oak forest carbon and water simulations: Model intercomparisons and evaluations against independent data. Ecological Monographs, 2004:74 (3), 443-489
[37]  Addiscott T M, Whitmore A Po Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. Journal of Agricultural Sciences, 1987, 109:141-157
[38]  Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using seven long-term experimental datasets. Geoderma, 1997, 81: 153-225

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133