全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2008 

短期气候可预报期限的时空分布

DOI: 10.3878/j.issn.1006-9895.2008.04.22

Keywords: 可预报性,月尺度,季节尺度,外界强迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

在非线性误差增长理论的基础上,研究了位势高度场与温度场月和季节时间尺度可预报期限的时空分布特征,结果表明:(1)在500hPa位势高度场上,年平均月和季节尺度可预报期限的空间分布都存在明显的南北经向性差异,其中在热带地区月和季节尺度可预报期限都为最大,月尺度可预报期限都在6个月以上,其中最高值超过了9个月,而季节尺度可预报期限基本上都在8个月以上,其中最高值超过了11个月;从热带地区到南北半球中纬度地区,随着纬度的升高,月和季节尺度可预报期限也迅速减少。(2)在500hPa位势高度场上,月和季节尺度可预报期限的空间分布都有明显的季节变化。冬季月和季节尺度可预报期限除了在热带地区较大外,在北太平洋和邻近的北美西北部地区、北大西洋地区以及南极地区,冬季月和季节尺度可预报期限也相对周围地区较高。夏季除了北非和西亚地区月和季节尺度可预报期明显大于冬季以外,大部分地区月和季节尺度可预报期限比冬季明显减少。(3)500hPa温度场月和季节尺度可预报期限的空间分布以及随季节的变化特征基本上与高度场相同,只是在热带大部分地区,高度场相对温度场来说月和季节尺度可预报性更高,更适合用来作长期预报。

References

[1]  李建平 丑纪范.非线性大气动力学的进展[J].大气科学,2003,27(4):653~673.
[2]  Lorenz E N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. , 1996, 26:636-646.
[3]  Trigo R M, Trigo I M, DaCamara C C, et aL Winter blocking episodes in the European-Atlantic sector: Climate impacts and associated physical mechanisms in the reanalysis. Climate Dynamics, 2004, 23:17-28.
[4]  Madden R A. Estimates of the natural variability of time-averaged sea level pressure. Mon. Wea. Rev., 1976, 104: 942- 952.
[5]  Rasmusson E, Carpenter T. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Man. Wea. Rev. , 1982, 110: 354-384.
[6]  Kumar A, Schubert S D, Suarez M S. Variability and predictability of 200-mb seasonal mean heights during summer and winter. J. Geophys. Res., 2003, 108, doi: 10. 1029/ 2002JD002728.
[7]  Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev. , 1981, 109: 784-812.
[8]  Schubert S D, Suarez M J, Pegion P J, et al. Predictability of zonal means during boreal summer. J. Climate, 2002, 15: 420-434.
[9]  Fennessy M J, Kinter J L, Marx L, et al. GeM simulations of the life cycles of the 1988 US drought and heat wave. COLA Rep. 6, Center for Ocean- Land - Atmosphere Studies, 1994, 68 pp.
[10]  Nan Sulan, Li Jianping. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 2003, 30, doi: 10. 1029/2003GL018381.
[11]  Shukla J. Dynamical predictability of monthly means. J. Atmos. Sci. , 1981, 38: 2547-2572.
[12]  丑纪范 郜吉东.长期数值天气预报[M].北京:气象出版社,1995.201-216.
[13]  Shukla J. Predictability in the midst of chaos. A scientific basis for climate forecasting. Science, 1998, 282:728-731.
[14]  Wang S W, Zhu J H. A review on seasonal climate prediction. Adv. Atmos. Sci., 2001, 18: 197-208.
[15]  Leith C E. Numerical simulation of the Earth\\'s atmosphere. Methods in Computational Physics, New York: Academic Press, 1965.
[16]  Leith C E. Predictability in theory and practice. Large-Scale Dynamics Processes in the Atmosphere, New York: Academic Press, 1983.
[17]  陈明行,纪立人.数值天气预报中的误差增长及大气可预报性[J].气象学报,1989,47:147-155.
[18]  Simmons A J, Mureau R, Petroliagis T. Error growth and estimates of predictability from the ECMWF forecasting system, Quart. J. Roy. Meteor. Soc. , 1995, 121:1739-1771.
[19]  Fraedrich K. Estimating the dimensions of weather and climate attractors. J. Atmos. Sci. , 1986, 43: 419-432.
[20]  Fraedrich K. Estimating weather and climate predictability on attractors. J. Atmos. Sci. , 1987, 44: 722-728.
[21]  Keppenne C L, Nicolis C. Global properties and local structure of the weather attractor over western Europe. J. Atmos, Sci. , 1989, 46:2356-2370.
[22]  Lacarra J F, Talagrand O. Short-range evolution of small perturbations in a barotrolpic model Tellus , 1988, 40A: 81-95.
[23]  Mu M. Nonlinear singular vectors and nonlinear singular values. Science in China (D), 2000, 43: 375-385.
[24]  李建平 丁瑞强 陈宝花.大气可预报性研究的回顾与展望[M].北京:气象出版社,2006.96-104.
[25]  李建平 丁瑞强.混沌系统单变量可预报性研究[J].大气科学,2008:.
[26]  丁瑞强 李建平.误差非线性的增长理论及可预报性研究[J].大气科学,2007,31(4):571-576.
[27]  Ding Ruiqiang, Li Jianping. Nonlinear finite-time Lyapunov exponent and predictability. Phys. Lett. A, 2007, 364: 396-400.
[28]  Chen Baohua, Li Jianping, Ding Ruiqiang. Nonlinear local Lyapunov exponent and atmospheric predictability research. Science in China (D), 2006, 49 (10), doi: 10. 1007/s11430- 006-1111-0.
[29]  丁瑞强 李建平.非线性误差增长理论在大气可预报性中的应用[J].气象学报,2008:.
[30]  Kumar A, Hoerling M P. Prospects and limitations of sea- sonal atmospheric GCM predictions. Bull. Amer. Meteor. Soc. , 1995, 76: 335-345.
[31]  Fennessy M J, Shukla J. Impact of initial soil wetness on seasonal atmospheric prediction. J. Climate, 1999, 12: 3167- 3180.
[32]  Anderson J L, Ploshay J. Impact of initial conditions on seasonal simulations with an atmospheric general circulation model. Quart. J. Roy. Meteor. Soc., 2000, 126: 2241- 2264.
[33]  Shukla J, Anderson J, Baumhefner D, et al. Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 2000, 81: 2593- 2606.
[34]  范晓青 李维京 张培群.目前短期气候预测可预报性的研究概况[J].气象,2003,29(2):1-6.
[35]  Sheng J. GCM experiments on changes in atmospheric predictability associated with the PNA pattern and tropical SST anomalies. Tellus, 2002, 54A: 317-329.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133