全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2009 

最优子集回归方法在季节气候预测中的应用

DOI: 10.3878/j.issn.1006-9895.2009.05.10

Keywords: 最优子集回归,降尺度,多模式集合,季节预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用DEMETER计划多个模式的模拟资料研究1959~2001年多模式集合预报的季节降水在中国区域的表现,并结合最优子集回归(OSR)方法对中国区域的季节降水进行降尺度预报,比较其与多模式集合预报的技巧。研究表明:多个单模式在中国区域对季节降水的模拟性能普遍较差,多元线性回归(MLR)集合的预报技巧不如集合平均(EM)。利用OSR方法进行降尺度预报可以极大改善中国区域季节降水的预报技巧。夏季,降水距平相关系数(ACC)在长江以南、西藏以及内蒙古中部等地区提高很显著,ACC在中国区域的平均达到0.29,明显高于多模式集合平均与多元线性回归集合。冬季,OSR方法可以改善多模式集合在中国北方地区较低的预报技巧。概率Brier技巧评分(BSS)也表明了OSR方法对季节降水预报的改善。需要说明的是,虽然OSR方法在中国区域能明显提高季节降水的预报技巧,但是其选取的预报因子与中国区域季节降水的物理机制问题仍有待于进一步的研究。

References

[1]  Atger F,The skill of ensemble prediction systems,Monthly Weather Review,1999.
[2]  Chen M,Xie P,Janowiak J E,Global land precipitation:A 50-year monthly analysis based on gauge observations,Journal of Hydrometeorology,2002.
[3]  Chen M,Xie P,Janowiak J E,Reconstruction of the oceanic precipitation from 1948 to the present,Long Beach,CA,2003.
[4]  Chen M,Xie P,Janowiak J E,Verifying the reanalysis and climate models outputs using a 56-year data set of reconstructed global precipitation,Seattle,Washington,2004.
[5]  Doblas-Reyes F J,Hagedom R,Palmer T N,The rationale behind the success of multi-model ensecables in seasonal forecasting-IL Calibration and combination,Tellus,2005.
[6]  范丽军.符淙斌.陈德亮 统计降尺度法对未来区域气候变化情景预估的研究进展 [J].-地球科学进展2005(03)
[7]  冯锦明.符淙斌 不同区域气候模式对中国地区温度和降水的长期模拟比较 [J].-大气科学2007(05)
[8]  Furnival G M,All possible regressions with less computation,Technometrics,1971.
[9]  Furnival G M,Wilson R W,Regression by leaps and bound,Technometrics,1974.
[10]  Krishnamurti T N,Kishtawal C M,LaRow T E,Improved weather and seasonal climate forecasts from multimodel superensemble,Science,1999.
[11]  高学杰.徐影.赵宗慈 数值模式不同分辨率和地形对东亚降水模拟影响的试验 [J].-大气科学2006(02)
[12]  Garside M J,The best sub-set in multiple regression analysis,Journal of Applied Statistics,1965.
[13]  Hagedorn R,Doblas-Reyes F J,Palmer T N,The rationale behind the success of multi-model ensembles in seasonal forecasting-Ⅰ.Basic concept,Tellus,2005.
[14]  Kharin V V,Zwiers F W,Climate predictions with muhimodel ensembles,Journal of Climate,2002.
[15]  Krishnamurti T N,Kishtawal C M,Zhang Z,Multimodel ensemble forecasts for weather and seasonal Climate,Journal of Climate,2000.
[16]  Mason S J,On using"climatology"as a reference strategy in the Brier and ranked probability skill scores,Monthly Weather Review,2004.
[17]  Michaelsen J,Corss-validation in statistical climate forecast models,Journal of Climate and Applied Meteorology,1987.
[18]  Murphy A H,A new vector partition of the probability score,Journal of Applied Meteorology,1973.
[19]  Palmer T N,Alessandri A,Andersen U,Development of a European multimodel ensemble system for seasonal-to-interannual prediction(DEMETER),Bulletin of the American Meteorological Society,2004.
[20]  Pang P,Kumar A,Van den Dool H,An analysis of muhimodel ensemble predictions for seasonal climate anomalies,Journal of Geophysical Research,2002.
[21]  Toth Z,Talagrand O,Candille G,Probability and ensemble forecasts,Wiley Press,2003.
[22]  Uppala S M,Kallberg P W,Simmons A J,The ERA40 re-analysis,Quart,J Roy Meteorl Soc,2005.
[23]  魏凤英,现代气候统计诊断与预测技术,北京:气象出版社,1999.
[24]  Wilks D S,Statistical Methods in the Atmospheric Sciences,Academic Press,Inc,1995.
[25]  Yoo J H,Kang I S,Theoretical examination of a muhi-model composite for seasonal prediction,Geophysical Research Letters,2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133