全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2010 

基于集合的观测资料影响性评价——简单AGCM的理想试验

DOI: 10.3878/j.issn.1006-9895.2010.04.11

Keywords: 观测资料影响性,集合,局地集合变换卡尔曼滤波(LETKF),SPEEDY模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

在LiuandKalnay(2008)的研究基础上,将基于集合的观测资料影响性评价方法(简称LK08法)运用到一个简单的大气环流模式中,对模拟探空资料的预报影响性进行了综合评价,考察了LK08法在真实大气环流模式上的适用性。研究结果表明,应用基于集合的评价方法可以一次性计算出同化系统中每个观测的影响性,然后按观测手段、观测区域等进行影响性数值的简单累加,以此可以比较不同类型观测的相对影响性。比较结果显示,不同半球的模拟探空观测对预报的总影响性相差不大,但由于南半球资料个数要远远少于北半球,因此,南半球单个观测的影响性要大于北半球的单个观测。不同观测类型对预报的总影响性也不相同。有效性验证分析表明,按LK08法计算得到的总体观测影响性能解释实际影响性的70%~80%,且很好地抓住了其变化和走势。

References

[1]  Chahine M T,Pagano T S,Aumann H H,et al.2006.AIRS:Im-proving weather forecasting and providing new data on greenhouse gases[J].Bull.Amer.Meteor.Soc.,87,911-926.
[2]  Danforth C M,Kalnay E,Miyoshi T,2007.Estimating and correc-ting global weather model error[J].Mon.Wea.Rev.,135 (2):281-299.
[3]  Goldberg MD.Qu Y N,McMillin L M,et al.2003.AIRS near-re-al-time products and algorithms in support of operational numeri-cal weather prediction[J].IEEE Trans.Geosci.Remote Sens.,41 (2):379-389.
[4]  Hunt B R,Kostelich E J,Szunyogh I.2007.Efficient data assimila-tion for spatiotemporal chaos.A local ensemble transform Kalman filter[J].Physica.D:Nonlinear Phenomena,230; 112-126.
[5]  Langland R H,Baker N L.2004.Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system[J].Tellus,56:189-201.
[6]  Li H,Kalnay E,Miyoshi T,et al.2009a.Accounting for model er-rors in ensemble data assimilation[J].Mon.Wea.Rev.,137,3407-3419.
[7]  Li H,Kalnay E,Miyoshi T.2009b.Simultaneous estimation of co-variance inflation and observation errors within an ensemble Kal-man filter[J].Quart.J.Roy.Meteor.Soc.,135:523-533.
[8]  Liu H,Zou X,2001.The impact of NORPEX targeted dropsondes on the analysis and 2-3-day forecasts of a landfalling Pacific win-ter storm using NCEP 3DVAR and 4DVAR systems[J].Moa Wea.Rev.,129 (8):1987-2004.
[9]  Liu J J,Kalnay E.2008.Estimating observation impact without ad-joint model in an ensemble Kalman filter[J].Quart.J.Roy.Meteor.Soc,134(634):1327-1335.
[10]  Le Marshall J,Jung J,Derber J,et al.2006.Improving global a-nalysis and forecasting with AIRS[J].Bull.Amer.Meteor.Soc.,87.891-894.
[11]  Molteni F.2003.Atmospheric simulations using a GCM with sim-plified physical parameterizations.I; Model climatology and vari-ability in multi-decadal experiments[J].Climate Dya,20:175-191.
[12]  Rabier F,Klinker E,Courtier P,et al.1996.Sensitivity of forecast errors to initial conditions[J].Quart J.Roy.Meteor.Soc.,122:121-150.
[13]  Rohn M,Kelly G,Saunders R W.2001.Impact of a new cloud mo-tion wind product from Meteosat on NWP analysis and forecasts[J].Moa Wea.Rev.,129 (9):2392-2403.
[14]  盛春岩,浦一芬,高守亭.2006.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学,30(1):93-107.Sheng C Y,Pu Y F,Gao S T.2006.Effect of Chinese Doppler radar data on nowcasting output of mesoscale model[J].Chinese Journal of Atmospheric Sciences(in Chinese),30(1):93-107.
[15]  王栋梁,梁旭东,端义宏.2005.云迹风在热带气旋路径数值预报中的应用研究[J].气象学撤,63(3):351-358.Wang D L,Liang X D,Duan Y H.2005.Impact of four-dimensional varia-tional data assimilation of the cloud drift wind data on tropical cy-clone track numerical forecast[J].Acta Meteorologica Sinica (in Chinese),63 (3):351-358.
[16]  Xiao Q N,Kuo Y H,Sun J,et al.2005.Assimilation of Doppler radar observations with a regional 3DVAR system:Impact of Doppler velocities on forecasts of a heavy rainfall case[J].J.Ap-pl.Meteor.,44:768-788.
[17]  Zapotocny T H,Menzel W P,Nelson J P,et al.2002.An impact study of five remotely sensed and five in situ data types in the Eta Data Assimilation System[J].Weather and Forecasting,17:263 -285.
[18]  Zhu Y Q,Gelaro R.2008.Observation sensitivity calculations using the adjoint of the gridpoint statistical interpolation (GSI) analysis system[J].Mon.Wea.Rev.,136:335-350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133