全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

阴阳网格上质量守恒计算性能分析

DOI: 10.3878/j.issn.1006-9895.2012.12060

Keywords: 阴阳网格,质量守恒,数值稳定性,计算精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

质量守恒数值计算是球面准均匀阴阳网格构造全球大气环流模式的重要条件,也是提高阴阳网格应用质量的重要技术手段。本文针对通量形式平流方程,在球面坐标上采用多种理想数值试验对阴阳网格上的三种守恒计算方案和边界插值非守恒计算方案进行了比较检验。发现,质量守恒方案不仅对全球数值积分重要,还影响数值计算精度,满足局地守恒条件的全球强迫守恒方法可以获得较高的精度;网格内质量均匀分布的阴阳网格边界通量一致性守恒强迫计算方案,实现了在不增加计算误差条件下保证局地和全球守恒的目的,且具有很小的计算负担,可以作为阴阳网格上全球质量强迫守恒的有效计算方案;而网格质量的线性分布可以有效提高阴阳网格的数值积分计算精度,但在一定程度上会增加计算负担。

References

[1]  Li X L, Chen D H, Peng X D, et al. 2008. A multimoment finite-volume shallow-water model on the Yin-Yang overset spherical grid [J]. Mon. Wea. Rev., 136 (8): 3066-3086.
[2]  穆穆, 季仲贞, 王斌, 等. 2003. 地球流体力学的研究与进展 [J]. 大气科学, 27 (4): 689-711. Mu Mu, Ji Zhongzhen, Wang Bin, et al. 2003. Achievements in geophysical fluid dynamics [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27 (4): 689-711.
[3]  Nair R D, Machenhauer B. 2002. The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere [J]. Mon. Wea. Rev., 130: 649-667.
[4]  Nair R D, C?té J, Staniforth A. 1999. Cascade interpolation for semi-Lagrangian advection over the sphere [J]. Quart. J. Roy. Meteor. Soc., 125 (556): 1445-1468.
[5]  Nair R D, Scroggs J S, Semazzi F H M. 2002. Efficient conservative global transport schemes for climate and atmospheric chemistry models [J]. Mon. Wea. Rev., 130 (8): 2059-2073.
[6]  Nair R D, Thomas S J, Loft R D. 2005. A discontinuous galerkin global shallow water model [J]. Mon. Wea. Rev., 133 (4): 876-888.
[7]  Peng X D, Xiao F, Takahashi K. 2006. Conservative constraint for a quasi-uniform overset grid on the sphere [J]. Quart. J. Roy. Meteor. Soc., 132 (616): 979-996.
[8]  Peng X D, Xiao F, Ohfuchi W, et al. 2005. Conservative semi-Lagrangian transport on a sphere and the impact on vapor advection in an atmospheric general circulation model [J]. Mon. Wea. Rev., 133 (3): 504- 520.
[9]  Qaddouri A. 2011. Nonlinear shallow-water equations on the Yin-Yang grid [J]. Quart. J. Roy. Meteor. Soc., 137 (656): 810-818.
[10]  Qaddouri A, Lee V. 2011. The Canadian global environmental multiscale model on the Yin-Yang grid system [J]. Quart. J. Roy. Meteor. Soc., 137 (660): 1913-1926.
[11]  Sadourny R. 1972. Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids [J]. Mon. Wea. Rev., 100 (2): 136-144.
[12]  Baba Y, Takahashi K, Sugimura T, et al. 2010. Dynamical core of an atmospheric general circulation model on a Yin-Yang grid [J]. Mon. Wea. Rev., 138 (10): 3988-4005.
[13]  陈嘉滨, 高学杰. 2000. 质量守恒律在国家气候中心气候谱模式中的应用 [J]. 大气科学, 24 (5): 608-614. Chen Jiabin, Gao Xuejie. 2000. An application of the mass conservation law to the spectral climate model of National Climate Center [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24 (5): 608-614.
[14]  Doswell C A III. 1984. A kinematic analysis of frontogenesis associated with a nondivergent vortex [J]. J. Atmos. Sci., 41 (7): 1242-1248.
[15]  纪立人, 陈嘉滨, 张道民, 等. 2005. 数值预报模式动力框架发展的若干问题综述 [J]. 大气科学, 29 (1): 120-130. Ji Liren, Chen Jiabin, Zhang Daomin, et al. 2005. Review of some numerical aspects of the dynamic framework of NWP model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29 (1): 120-130.
[16]  Kageyama A, Sato T. 2004. The “Yin-Yang grid”: An overset grid in spherical geometry [J]. Geochemistry Geophysics Geosystems, 5 (9): Q09005.
[17]  Kurihara Y. 1965. Numerical integration of the primitive equations on a spherical grid [J]. Mon. Wea. Rev., 93 (7): 399-415.
[18]  Li X L, Chen D H, Peng X D, et al. 2006. Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere [J]. Advances in Atmospheric Sciences, 23 (5): 792-801.
[19]  Sadourny R, Arakawa A, Mintz Y. 1968. Integration of the non-divergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere [J]. Mon. Wea. Rev., 96 (6): 351-356.
[20]  Staniforth A, Thuburn J. 2012. Horizontal grids for global weather and climate prediction models: A review [J]. Quart. J. Roy. Meteor. Soc., 138 (662): 1-26.
[21]  Washington W M, Buja L, Craig A. 2009. The computational future for climate and earth system models: On the path to petaflop and beyond [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367: 833-846.
[22]  Williamson D L. 1968. Integration of the barotropic vorticity equation on a spherical geodesic grid [J]. Tellus, 20 (4): 642-653.
[23]  Williamson D L. 2007. The evolution of dynamical cores for global atmospheric models [J]. J. Meteor. Soc. Japan, 85B: 241-269.
[24]  Williamson D L, Drake J B, Hack J J, et al. 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry [J]. J. Comput. Phys., 102 (1): 211-224.
[25]  Xiao F, Yabe T, Peng X D, et al. 2002. Conservative and oscillation-less atmospheric transport schemes based on rational functions [J]. J. Geophys. Res., 107 (D22): 4609.Zerroukat M, Allen T. 2012. On the solution of elliptic problems on overset/Yin-Yang grids [J]. Mon. Wea. Rev., 140: 2756-2767, doi: 10.1175/MWR-D-11-00272.1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133