Kalnay E, Yang S C. 2010. Accelerating the spin-up of ensemble Kalman filtering [J]. Quart. J. Roy. Meteor. Soc., 136 (651): 1644-1651.
[2]
兰伟仁, 朱江, Xue Ming, 等. 2010a. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验 I. 不考虑模式误差的情形 [J]. 大气科学, 34 (3): 640-652. Lan Weiren, Zhu Jiang, Xue Ming, et al. 2010a. Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part I: Perfect model tests [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3): 640-652.
[3]
兰伟仁, 朱江, Xue M, 等. 2010b. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验 II. 考虑模式误差的情形 [J]. 大气科学, 34 (4): 737-753. Lan Weiren, Zhu Jiang, Xue Ming, et al. 2010b. Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part II: Imperfect model tests [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (4): 737-753.
[4]
Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter [J]. Quart. J. Roy. Meteor. Soc., 135 (639): 523-533.
[5]
Lorenz E N, Emanuel K A. 1998. Optimal sites for supplementary weather observations: Simulation with a small model [J]. J. Atmos. Sci., 55: 399- 414.
[6]
Maybeck P S. 1979. Square root filtering [M]// Stochastic Models, Estimation and Control, Vol. 1. New York: Academic Press, 411.
[7]
闵锦忠, 王世璋, 陈杰, 等. 2011. 迭代EnSRF方案的设计及其在Lorenz96模式下的检验 [J]. 大气科学, 36 (5): 889-900. Min Jinzhong, Wang Shizhang, Chen Jie, et al. 2011 The implementation and test of iterative EnSRF with Lorenz96 model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (5): 889-900.
[8]
Sakov P, Evensen G, Bertino L. 2010. Asynchronous data assimilation with the EnKF [J]. Tellus A, 62 (1): 24-29.
[9]
Snyder C, Zhang F Q. 2003. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter [J]. Mon. Wea. Rev., 131 (8): 1663-1677.
[10]
Sun J, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54 (12): 1642-1661.
[11]
Tong M, Xue M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic Model: OSS Experiments [J]. Mon. Wea. Rev., 133 (7): 1789-1807.
[12]
Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations [J]. Mon. Wea. Rev., 130 (7): 1913-1924.
[13]
Whitaker J S, Hamill T M, Wei X, et al. 2008. Ensemble data assimilation with the NCEP global forecast system [J]. Mon. Wea. Rev., 136 (2): 463-482.
[14]
Xu Q, Lu H J, Gao S T, et al. 2008. Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations [J]. Mon. Wea. Rev., 136 (7): 2651-2668.
[15]
许小永, 郑国光, 刘黎平. 2004. 多普勒雷达资料4DVAR同化反演的模拟研究 [J]. 气象学报, 62 (4): 410-422. Xu Xiaoyong, Zheng Guoguang, Liu Liping. 2004. Dynamical and microphysical retrieval from simulated Doppler radar observations using the 4DVAR assimilation technique [J]. Acta Meteorologica Sinica (in Chinese), 62 (4): 410-422.
[16]
许小永, 刘黎平, 郑国光. 2006. 集合卡尔曼滤波同化多普勒雷达资料的数值试验 [J]. 大气科学, 30 (4): 712-728. Xu Xiaoyong, Liu Liping, Zheng Guoguang. 2006. Numerical experiment of assimilation of Doppler radar data with an ensemble Kalman filter [J]. Chinese J. Atmos. Sci. (in Chinese), 30 (4): 712-728.
[17]
Xue M, Tong M, Droegemeier K K. 2006. An OSSE framework based on the ensemble square-root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting [J]. J. Atmos. Oceanic Technol., 23 (1): 46-66.
[18]
Yang S C, Corazza M, Carrassi A, et al. 2009. Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model [J]. Mon. Wea. Rev., 137 (2): 693-709.
[19]
Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter [J]. Mon. Wea. Rev., 132 (5): 1238-1253.
[20]
Zheng F, Zhu J, Zhang R H, et al. 2006. Ensemble forecast of ENSO using an intermediate coupled model [J]. Geophys. Res. Lett., 33: L19604, doi:10.1029/2006GL026994.
[21]
Anderson J L. 2007a. An adaptive covariance inflation error correction algorithm for ensemble filters [J]. Tellus A, 59 (2): 210-224.
[22]
Anderson J L. 2007b. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 99-111.
[23]
Caya C, Sun J, Snyder C. 2005. A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation [J]. Mon. Wea. Rev., 133 (11): 3081-3094.
[24]
Evensen G. 1994. Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. J. Geophys. Res., 99 (C5): 10143-10162.
[25]
Gaspari G, Cohn S E. 1999. Construction of correlation functions in two and three dimensions [J]. Quart. J. Roy. Meteor. Soc., 125 (554): 723-757.
[26]
Hunt B R, Kostelich E J, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 112-126.
[27]
Hunt B R, Kalney E, Kostelich J E, et al. 2004. Four-dimensional ensemble Kalman filtering [J]. Tellus A, 56 (4): 273-277.
[28]
Jung Y S, Zhang G F, Xue M. 2008a. Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables [J]. Mon. Wea. Rev., 136 (6): 2228-2245.
[29]
Jung Y S, Xue M, Zhang G F, et al. 2008b. Assimilation of simulated polarimetric radar data for a convective storm using ensemble kalman filter. Part II: Impact of polarimetric data on storm analysis [J]. Mon. Wea. Rev., 136 (6): 2246-2260.