全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

迭代集合平方根滤波在风暴尺度资料同化中的应用

DOI: 10.3878/j.issn.1006-9895.2012.11186

Keywords: 传统EnSRF,迭代EnSRF,风暴尺度,初始分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文根据最新的非同步(Asynchronous)算法设计了一个迭代EnSRF(iterativeEnsembleSquareRootFilter,简称iEnSRF)方案。在这个迭代方案中,同化时刻的背景场和一个较早时刻的背景场将被同时更新,得到两个时刻的分析场,然后预报模式从较早时刻的分析场再次进行集合预报到同化时刻,最后重复前面两个步骤,实现对同化时刻背景场的迭代分析。在一个理想风暴个例上,本文通过模拟雷达资料同化对这一方案进行了检验,对比了传统EnSRF方案和iEnSRF方案的同化效果。此外,本文还讨论了只在同化时刻一个时间层上进行迭代的情况。同化单部模拟雷达资料的试验表明iEnSRF方案能够在初始估计缺少风暴信息的情况下较好地还原风暴中垂直运动和潜热释放之间的正反馈关系,显著提高初始分析的质量并加快随后同化的收敛速度。而传统EnSRF在这一初始估计较差的情况下不能在初始分析中有效估计这一相关关系并导致其收敛速度较慢且收敛误差较大。当只涉及一个时间层时,迭代算法并不能取得比传统EnSRF更好的效果。这一结果表明重复使用观测的算法只有在涉及两个时间层时才能改进最终的分析结果。在同化两部模拟雷达资料的试验中,iEnSRF的初始分析仍然优于传统EnSRF的初始分析,并在对流层高层取得显著改进。单双雷达资料同化的试验结果对比表明,单纯增加观测数量并不能显著改进传统EnSRF对非观测变量(比如温度)的分析,而iEnSRF则能够更加充分地利用更多的观测进一步提升初始分析的效果。

References

[1]  Kalnay E, Yang S C. 2010. Accelerating the spin-up of ensemble Kalman filtering [J]. Quart. J. Roy. Meteor. Soc., 136 (651): 1644-1651.
[2]  兰伟仁, 朱江, Xue Ming, 等. 2010a. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验 I. 不考虑模式误差的情形 [J]. 大气科学, 34 (3): 640-652. Lan Weiren, Zhu Jiang, Xue Ming, et al. 2010a. Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part I: Perfect model tests [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3): 640-652.
[3]  兰伟仁, 朱江, Xue M, 等. 2010b. 风暴尺度天气下利用集合卡尔曼滤波模拟多普勒雷达资料同化试验 II. 考虑模式误差的情形 [J]. 大气科学, 34 (4): 737-753. Lan Weiren, Zhu Jiang, Xue Ming, et al. 2010b. Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part II: Imperfect model tests [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (4): 737-753.
[4]  Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter [J]. Quart. J. Roy. Meteor. Soc., 135 (639): 523-533.
[5]  Lorenz E N, Emanuel K A. 1998. Optimal sites for supplementary weather observations: Simulation with a small model [J]. J. Atmos. Sci., 55: 399- 414.
[6]  Maybeck P S. 1979. Square root filtering [M]// Stochastic Models, Estimation and Control, Vol. 1. New York: Academic Press, 411.
[7]  闵锦忠, 王世璋, 陈杰, 等. 2011. 迭代EnSRF方案的设计及其在Lorenz96模式下的检验 [J]. 大气科学, 36 (5): 889-900. Min Jinzhong, Wang Shizhang, Chen Jie, et al. 2011 The implementation and test of iterative EnSRF with Lorenz96 model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (5): 889-900.
[8]  Sakov P, Evensen G, Bertino L. 2010. Asynchronous data assimilation with the EnKF [J]. Tellus A, 62 (1): 24-29.
[9]  Snyder C, Zhang F Q. 2003. Assimilation of simulated Doppler radar observations with an ensemble Kalman filter [J]. Mon. Wea. Rev., 131 (8): 1663-1677.
[10]  Sun J, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54 (12): 1642-1661.
[11]  Tong M, Xue M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic Model: OSS Experiments [J]. Mon. Wea. Rev., 133 (7): 1789-1807.
[12]  Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations [J]. Mon. Wea. Rev., 130 (7): 1913-1924.
[13]  Whitaker J S, Hamill T M, Wei X, et al. 2008. Ensemble data assimilation with the NCEP global forecast system [J]. Mon. Wea. Rev., 136 (2): 463-482.
[14]  Xu Q, Lu H J, Gao S T, et al. 2008. Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations [J]. Mon. Wea. Rev., 136 (7): 2651-2668.
[15]  许小永, 郑国光, 刘黎平. 2004. 多普勒雷达资料4DVAR同化反演的模拟研究 [J]. 气象学报, 62 (4): 410-422. Xu Xiaoyong, Zheng Guoguang, Liu Liping. 2004. Dynamical and microphysical retrieval from simulated Doppler radar observations using the 4DVAR assimilation technique [J]. Acta Meteorologica Sinica (in Chinese), 62 (4): 410-422.
[16]  许小永, 刘黎平, 郑国光. 2006. 集合卡尔曼滤波同化多普勒雷达资料的数值试验 [J]. 大气科学, 30 (4): 712-728. Xu Xiaoyong, Liu Liping, Zheng Guoguang. 2006. Numerical experiment of assimilation of Doppler radar data with an ensemble Kalman filter [J]. Chinese J. Atmos. Sci. (in Chinese), 30 (4): 712-728.
[17]  Xue M, Tong M, Droegemeier K K. 2006. An OSSE framework based on the ensemble square-root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting [J]. J. Atmos. Oceanic Technol., 23 (1): 46-66.
[18]  Yang S C, Corazza M, Carrassi A, et al. 2009. Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic model [J]. Mon. Wea. Rev., 137 (2): 693-709.
[19]  Zhang F, Snyder C, Sun J. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter [J]. Mon. Wea. Rev., 132 (5): 1238-1253.
[20]  Zheng F, Zhu J, Zhang R H, et al. 2006. Ensemble forecast of ENSO using an intermediate coupled model [J]. Geophys. Res. Lett., 33: L19604, doi:10.1029/2006GL026994.
[21]  Anderson J L. 2007a. An adaptive covariance inflation error correction algorithm for ensemble filters [J]. Tellus A, 59 (2): 210-224.
[22]  Anderson J L. 2007b. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 99-111.
[23]  Caya C, Sun J, Snyder C. 2005. A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation [J]. Mon. Wea. Rev., 133 (11): 3081-3094.
[24]  Evensen G. 1994. Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. J. Geophys. Res., 99 (C5): 10143-10162.
[25]  Gaspari G, Cohn S E. 1999. Construction of correlation functions in two and three dimensions [J]. Quart. J. Roy. Meteor. Soc., 125 (554): 723-757.
[26]  Hunt B R, Kostelich E J, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 112-126.
[27]  Hunt B R, Kalney E, Kostelich J E, et al. 2004. Four-dimensional ensemble Kalman filtering [J]. Tellus A, 56 (4): 273-277.
[28]  Jung Y S, Zhang G F, Xue M. 2008a. Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables [J]. Mon. Wea. Rev., 136 (6): 2228-2245.
[29]  Jung Y S, Xue M, Zhang G F, et al. 2008b. Assimilation of simulated polarimetric radar data for a convective storm using ensemble kalman filter. Part II: Impact of polarimetric data on storm analysis [J]. Mon. Wea. Rev., 136 (6): 2246-2260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133