全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

湛江地区近海岸雾产生的天气条件及宏微观特征分析

DOI: 10.3878/j.issn.1006-9895.2012.12009

Keywords: 天气系统,气象要素,宏微观特征,雾滴谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2011年2~3月广东省湛江市东海岛雷达站观测得到的12次雾过程中雾滴谱、能见度、边界层风温场资料以及常规气象资料,对沿岸海雾发生时的天气系统进行分类,分析了雾发生时的气象条件、边界层特点、微物理特征等,并对典型个例进行讨论。总结发现:海雾易出现在低压前部、高压后部和冷锋前部等天气形势下;雾过程中,地面以偏东风为主,高空以偏东、偏南风为主;雾滴数浓度(N)的平均值变化范围为170~372cm-3,液态水含量(LWC)为0.018~0.170gm-3,平均半径为1.71~3.28μm。选取了一个典型个例来研究典型天气形势下海雾宏微观特征,该过程发展初期以核化凝结为主,在水汽不充足时,大量的雾滴凝结核争食水汽,使得N增加而平均半径几乎不变。根据自动转化阈值T可以看出,成熟时期碰并效率增加,大滴端数密度增加,滴谱拓宽。结合边界层气象要素演变分析发现,在夜间急流显著时,不利于雾滴生长,LWC较低;而高空风速较小,逆虚温较强可能是消散阶段平均半径出现跃增的原因。雾滴谱呈双峰分布,且瞬时谱符合Gamma分布;液态水含量与消光系数、有效半径呈正相关关系,相关系数分别为0.95和0.97。

References

[1]  鲍宝堂, 束家鑫, 朱炳权. 1995. 上海城市雾理化特性的研究 [J]. 南京气象学院学报, 18 (1): 114-118. Bao Baotang, Shu Jiaxin, Zhu Bingquan. 1995. Study on physicochemical properties of urban fog in Shanghai [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 18 (1): 114- 118.
[2]  Baronti P, Elzweig S. 1973. A study of droplet spectra in fogs [J]. J. Atmos. Sci., 30: 903-908.
[3]  Beardsley J W. 1976. Fog on the central California coast for 1973: Analysis of trends [D]. M. S. thesis, Department of Oceanography, Naval Postgraduate School, 114.
[4]  Bott A, Sievers U, Zdunkowski W. 1990. A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics [J]. J. Atmos. Sci., 47: 2153-2166.
[5]  程相坤, 蔡冬梅. 2010. 大连地区辐射雾与平流雾边界层温度场及风场对比 [J].气象科技, 38 (4): 427-431. Cheng Xiangkun, Cai Dongmei. 2010. Comparison of ABL temperature and wind features between radiative and advective fogs in Dalian [J]. Meteorological Science and Technology (in Chinese), 38 (4): 427-431.
[6]  邓雪娇, 吴兑, 叶燕翔. 2002. 南岭山地浓雾的物理特征 [J]. 热带气象学报, 18 (3): 227-236. Deng Xuejiao, Wu Dui, Ye Yanxiang. 2002. Physical characteristics of dense fog at Nanling mountain region [J]. Journal of Topical Meteorology (in Chinese), 18 (3): 227-236.
[7]  Dickson D R, Hales J V. 1963. Computation of visual range in fog and low clouds [J]. J. Appl. Meteor., 2: 281-285.
[8]  Eldridge R G. 1971. The relationship between visibility and liquid water content in fog [J]. J. Atmos. Sci., 28: 1183-1186.
[9]  Fedorova N, Levit V, Fedorov D. 2008. Fog and stratus formation on the coast of Brazil [J]. Atmospheric Research, 87 (3-4): 268-278.
[10]  Fitzgerald J W. 1978. A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia [J]. J. Atmos. Sci., 35: 1522-1535.
[11]  Gao S H, Lin H, Shen B, et al. 2007. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling [J]. Advances in Atmospheric Sciences, 24 (1): 65-81.
[12]  Goodman J. 1977. The microstructure of California Coastal fog and stratus [J]. J. Appl. Meteor., 16: 1056-1067.
[13]  Gultepe I, Isaac G A, Leaitch W R, et al. 1996. Parameterizations of marine stratus microphysics based on in situ observations: Implications for GCMs [J]. J. Climate, 9: 345-357.
[14]  Gultepe I, Milbrandt J A. 2007a. Microphysical observations and mesoscale model simulation of a warm fog case during FRAM Project [J]. Pure Appl. Geophys., 164: 1161-1178.
[15]  陆春松, 牛生杰, 杨军, 等. 2008. 南京冬季平流雾的生消机制及边界层结构观测分析 [J]. 南京气象学院学报, 31 (4): 520-529. Lu Chunsong, Niu Shengjie, Yang Jun, et al. 2008. An observational study on physical mechanism and boundary layer structure of winter advection fog in Nanjing [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 31 (4): 520-529.
[16]  陆春松, 牛生杰, 杨军, 等. 2010. 南京冬季一次雾过程宏微观结构的突变特征及成因分析 [J]. 大气科学, 34 (4): 681-690. Lu Chunsong, Niu Shengjie, Yang Jun, et al. 2010. Jump features and causes of macro and microphysical structures of a winter fog in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (4): 681-690.
[17]  Niu S J, Lu C S, Liu Y G, et al. 2010a. Analysis of the microphysical structure of heavy fog using a droplet spectrometer: A case study [J]. Advances in Atmospheric Science, 27 (6): 1259-1275.
[18]  Niu S J, Lu C S, Yu H Y, et al. 2010b. Fog research in China: An overview [J]. Advances in Atmospheric Sciences, 27 (3): 639-661.
[19]  Pilié R J, Mack E J, Rogers C W, et al. 1979. The formation of marine fog and the development of fog-stratus systems along the California coast [J]. J. Appl. Meteor., 18 (10): 1275-1286.
[20]  Pinnick R G, Jennings S G, Chylek P, et al. 1979. Verification of a linear relation between IR extinction, absorption and liquid water content of fogs [J]. J. Atmos. Sci., 36: 1577-1586.
[21]  Podzimek J. 1997. Droplet concentration and size distribution in haze and fog [J]. Studia Geophysica ET Geodaetica, 41: 277-296.
[22]  Pontikis C, Hicks E. 1992. Contribution to the cloud droplet effective radius parameterization [J]. Geophys. Res. Lett., 19: 2227-2230.
[23]  屈凤秋, 刘寿东, 易燕明, 等. 2008. 一次华南海雾过程的观测分析 [J]. 热带气象学报, 24 (5): 490-496. Qu Fengqiu, Liu Shoudong, Yi Yanming, et al. 2008. The observation and analysis of a sea fog event in South China Sea [J]. Journal of Tropical Meteorology (in Chinese), 24 (5): 490-496.
[24]  宋润田,金永利. 2001.-次平流雾边界层风场和温度场特征及其逆温控制因子的分析 [J].热带气象学报,17(4): 443-451. Song Runtian,Jin Yongli. 2001. Analysis of control factors of temperature inversion of advection fog wind field and characteristics of temperature field [J]. Journal of Tropical Meteorology (in Chinese),17(4): 443-451.
[25]  Tachibana Y, Iwamoto K, Ogawa H, et al. 2008. Observational study on atmospheric and oceanic boundary-layer structures accompanying the Okhotsk anticyclone under fog and non-fog conditions [J]. J. Meteor. Soc. Japan, 86 (5): 753-771.
[26]  唐浩华, 范绍佳, 吴兑, 等. 2002. 南岭山地浓雾的微物理结构及演变过程 [J]. 中山大学学报 (自然科学版), 41 (4): 92-96. Tang Haohua, Fan Shaojia, Wu Dui, et al. 2002. Research of the microphysical structure and evolution of dense fog over Nanling mountain area [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 41 (4): 92-96.
[27]  Tomasi C, Tampieri F. 1976. Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog [J]. Atmosphere, 14 (2): 61-76.
[28]  徐峰. 2011. 南海海雾理化特性及生消机理 [D]. 南京信息工程大学博士学位论文, 76. Xu Feng. 2011. Study on physicochemical charac- teristics of sea fog on the Leizhou Peninsula [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology, 76.
[29]  徐静琦, 张正, 魏皓. 1994. 青岛海雾雾滴谱与含水量观测与分析 [J]. 海洋沼泽通报, (2): 174-178. Xu Jingqi, Zhang Zheng, Wei Hao. 1994. Measurement and analysis of droplet spectrum and liquid water content of sea fog [J]. Transactions of Oceanology and Limnology (in Chinese), (2): 174-178.
[30]  杨中秋,许绍祖,耿骠. 1989.舟山地区春季海雾的形成和微物理结构 [J].海洋学报,11(4): 431-438. Yang Zhongqiu,Xu Shaozu,Geng Biao. 1989. The formation and microphysics of sea fog in spring in Zhoushan area [J]. Acta Oceanologica Sinica (in Chinese),11(4): 431-438.
[31]  Gultepe I, Tardif R, Michaelides S C, et al. 2007b. Fog research: A review of past achievements and future perspectives [J]. Pure Appl. Geophys., 164 (6-7): 1121-1159.
[32]  何晖, 郭学良, 刘建忠, 等. 2009. 北京一次大雾天气边界层结构特征及生消机理观测与数值模拟研究 [J]. 大气科学, 33 (6): 1174-1186. He Hui, Guo Xueliang, Liu Jianzhong, et al. 2009. Observation and simulation study of the boundary layer structure and the formation, dispersal mechanism of a heavy fog event in Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (6): 1174-1186.
[33]  胡朝霞, 雷恒池, 董剑希, 等. 2011. 一次区域暖雾的特征分析及数值模拟 [J]. 气候与环境研究, 16 (1): 71-84. Hu Zhaoxia, Lei Hengchi, Dong Jianxi, et al. 2011. Characteristic analysis and numerical simulation of a regional warm fog event [J]. Climatic and Environmental Research (in Chinese), 16 (1): 71-84.
[34]  黄辉军, 黄健, 刘春霞, 等. 2009. 茂名地区海雾的微物理结构特征 [J]. 海洋学报, 31 (2): 17-23. Huang Huijun, Huang Jian, Liu Chunxia, et al. 2009. Microphysical characteristics of the sea fog in Maoming area [J]. Acta Oceanologica Sinica (in Chinese), 31 (2): 17-23.
[35]  黄辉军, 黄健, 毛伟康, 等. 2010. 茂名地区海雾含水量的演变特征及其与大气水平能见度的关系 [J]. 海洋科学, 32 (2): 40-53. Huang Huijun, Huang Jian, Mao Weikang, et al. 2010. Characteristics of liquid water content of sea fog in Maoming area and its relationship with atmospheric horizontal visibility [J]. Acta Oceanologica Sinica (in Chinese), 32 (2): 40-53.
[36]  黄玉生, 黄玉仁, 李子华, 等. 2000. 西双版纳冬季雾的微物理结构及演变过程 [J]. 气象学报, 58 (6): 715-725. Huang Yusheng, Huang Yuren, Li Zihua, et al. 2000. The microphysical structure and evolution of winter fog in Xishuangbanna [J]. Acta Meteorologica Sinica (in Chinese), 58 (6): 715-725.
[37]  Hudson J G. 1980. Relationship between fog condensation nuclei and fog microstructure [J]. J. Atmos. Sci., 37: 1854-1867.
[38]  Kessler E. 1969. On the Distribution and Continuity of Water Substance in Atmospheric Circulation [M]. Boston: American Meteorological Society, 84pp.
[39]  Kunkel B A. 1984. Parameterization of droplet terminal velocity and extinction coefficient in fog models [J]. J. Climate Appl. Meteor., 23: 34-41.
[40]  Leipper D F. 1994. Fog on the U. S. West coast: A review [J]. Bull. Amer. Meteor. Soc., 75 (2): 229-240.
[41]  Lewis J, Koracin D, Rabin R, et al. 2003. Sea fog off the California coast: Viewed in the context of transient weather systems [J]. J. Geophys. Res., 108: 4457, doi: 10.1029/2002JD002833.
[42]  Lewis J M, Kora?in D, Redmond K T. 2004. Sea fog research in the United Kingdom and United States: A historical essay including outlook [J]. Bull. Amer. Meteor. Soc., 85: 395-408.
[43]  林晓能, 宋萍萍. 1990. 南海一次典型海雾过程的特征分析 [J]. 海洋预报, 7 (4): 75-78. Lin Xiaoneng, Song Pingping. 1990. Analysis on the characteristic of a typical sea fog process over South China Sea [J]. Marine Forecasts (in Chinese), 7 (4): 75-78.
[44]  刘延刚. 1991. 偏度和峰度在粒子谱研究中的应用 [J]. 气象, 17 (1): 9-14. Liu Yan’gang. 1991. The application of skewness and kurtosis to the studies on particle distribution [J]. Meteorological Monthly (in Chinese), 17 (1): 9-14.
[45]  Liu Y G, Hallett J. 1997. The “1/3” power law between effective radius and liquid-water content [J]. Quart. J. Roy. Meteor. Soc., 123: 1789-1795.
[46]  Liu Y G, Daum P H, McGraw R. 2004. An analytical expression for predicting the critical radius in the autoconversion parameterization [J]. Geophys. Res. Lett., 31: L06121, doi: 10.1029/2003GL019117.
[47]  Liu Y G, Daum P H, McGraw R L. 2005. Size truncation effect, threshold behavior, and a new type of autoconversion parameterization [J]. Geophys. Res. Lett., 32: L11811, doi: 10.1029/2005GL022636.
[48]  Liu Y G, Daum P H, McGraw R, et al. 2006a, Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process [J]. Geophys. Res. Lett., 33: L11804, doi: 10.1029/2005GL025500.
[49]  Liu Y G, Daum P H, Yum S S. 2006b. Analytical expression for the relative dispersion of the cloud droplet size distribution [J]. Geophys. Res. Lett., 33: L02810, doi: 10.1029/2005GL024052.
[50]  Reid J S, Hobbs P V, Rangno A L, et al. 1999. Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke [J]. J. Geophys. Res., D104: 6145-6153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133