全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

海洋环流对全球增暖趋势的调制:基于FGOALS-s2的数值模拟研究

DOI: 10.3878/j.issn.1006-9895.2012.12306

Keywords: 气候系统模式,全球增暖,年代际变化,副热带—热带经圈环流(STC),印度尼西亚贯穿流(ITF),大西洋经圈翻转流函数(AMOC)

Full-Text   Cite this paper   Add to My Lib

Abstract:

在工业革命以来全球长期增暖趋势背景下,全球平均表面气温还同时表现出年代际变化特征,二者叠加在一起使得全球平均气温在某些年份增暖相对停滞(如1999~2008年)或者增暖相对较快(如1980~1998年)。利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的耦合气候模式FGOALS-s2历史气候和典型路径浓度(RCPs)模拟试验结果研究了可能造成全球增暖的年代际停滞及加速现象的原因,特别是海洋环流对全球变暖趋势的调制作用。该模式模拟的全球平均气温与观测类似,即在长期增暖趋势之上,还叠加了显著的年代际变化。对全球平均能量收支分析表明,模拟的气温年代际变化与大气顶净辐射通量无关,意味着年代际表面气温变化可能与能量在气候系统内部的重新分配有关。通过对全球增暖加速和停滞时期大气和海洋环流变化的合成分析及回归分析,发现全球表面气温与大部分海区海表温度(SST)均表现出几乎一致的变化特征。在增暖停滞时期,SST降低,更多热量进入海洋次表层和深层,使其温度增加;而在增暖加速时期,更多热量停留在表层,使得大部分海区SST显著增加,次表层海水和深海相对冷却。进一步分析表明,热带太平洋表层和次表层海温年代际变化主要是由于副热带—热带经圈环流(STC)的年代际变化所致,然后热带太平洋海温异常可以通过风应力和热通量强迫作用引起印度洋、大西洋海温的年代际变化。在此过程中,海洋环流变化起到了重要作用,例如印度尼西亚贯穿流(ITF)年代际异常对南印度洋次表层海温变化起到关键作用,而大西洋经圈翻转环流(AMOC)则能直接影响到北大西洋深层海温变化。

References

[1]  Alexander M A, Blade I, Newman M, et al. 2002. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans [J]. J. Climate, 15: 2205-2231.
[2]  Bao Q, Lin P F, Zhou T J, et al. 2013. The Flexible Global Ocean- Atmosphere-Land System model, Spectral Version 2: FGOALS-s2 [J]. Adv. Atm. Sci. In press.
[3]  Behera S K, Salvekar P S, Yamagata T. 2000. Simulation of interannual SST variability in the tropical Indian Ocean [J]. J. Climate, 13: 3487-3499.
[4]  Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the Community Climate System Model, version three [R]. NCAR Tech. Note, NCAAR/TN-463+ STR, 70 pp.
[5]  Brohan P, Kennedy J J, Harris I, et al. 2006. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 [J]. J. Geophys. Res., 111: D12106, doi:10.1029/2005JD006548.
[6]  Clarke A J, Liu X. 1994. Interannual sea level in the northern and eastern Indian Ocean [J]. J. Phys. Oceanogr., 24: 1224-1235.
[7]  Cunningham S A, Kanzow T, Rayner D, et al. 2007. Temporal variability of the Atlantic meridional overturning circulation at 26°N [J]. Science, 317: 935-938, doi:10.1126/science.1141304.
[8]  Deser C, Blackmon M L. 1993. Surface climate variations over the North Atlantic Ocean during winter: 1900-1989 [J]. J. Climate, 6: 1743-1753.
[9]  Easterling D R, Wehner M F. 2009. Is the climate warming or cooling? [J]. Geophys. Res. Lett., 36 (8): L08706.
[10]  Hansen J, Ruedy R, Sato M, et al. 2001. A closer look at United States and global surface temperature change [J]. J. Geophys. Res., 106 (D20): 23947-23963.
[11]  Hawkins E. 2011. Our evolving climate: communicating the effects of climate variability [J]. Weather, 66 (7): 175-179, doi:10.1002/wea.761.
[12]  IPCC. 2007. Climate Change 2007: The Physical Science Basis [M]. Solomon S, Qin M, Manning Z, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovermental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 940.
[13]  Ishii M, Kimoto M. 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections [J]. J. Oceanogr., 65: 287-299.
[14]  Katsman C A, van Oldenborgh G J. 2011. Tracing the upper ocean’s “missing heat” [J]. Geophys. Res. Lett., 38: L14610.
[15]  Kaufmann R K, Kauppib H, Mann M L, et al. 2011. Reconciling anthropogenic climate change with observed temperature 1998-2008 [J]. Proc. Natl. Acad. Sci. USA, 108(29): 11790-11793.
[16]  Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J. Climate, 12: 917-932.
[17]  Lyman J M, Good S A, Gouretski V V, et al. 2010. Robust warming of the global upper ocean [J]. Nature, 465 (7296): 334-337, doi:10.1038/ nature09043.
[18]  McPhaden M J, Zhang D X. 2004. Pacific Ocean circulation rebounds [J]. Geophys. Res. Lett., 31: L18301, doi:10.1029/2004GL020727.
[19]  Meehl G A, Arblaster J M, Fasullo J T, et al. 2011. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods [J]. Nature Climate Change, 1 (7): 360-364.
[20]  Meehl G A, Hu A, Arblaster J M, et al. 2013. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation [J]. J. Climate, submitted.
[21]  Meyers G. 1996. Variation of Indonesian throughflow and the El Ni?o-Southern Oscillation [J]. J. Geophys. Res., 101 (C5): 12255-12263, doi:10.1029/95JC03729.
[22]  Murtugudde R, McCreary J P Jr, Busalacchi A J. 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998 [J]. J. Geophys. Res., 104 (C2): 3295-3306.
[23]  Nigam S, Shen H S. 1993. Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian oceans. Part I: COADS observations [J]. J. Climate, 6: 657-676.
[24]  Nonaka M, Xie S P, McCreay J P. 2002. Decadal variability in the subtropical cells and equatorial Pacific SST [J]. Geophys. Res. Lett., 29 (7): 1116.
[25]  Oleson K W, Bonan G B, Levis S, et al. 2004. Technical description of the Community Land Model (CLM) [R]. NCAR/TN-461+STR.
[26]  Palmer M D, McNeall D J, Dunstone N J, et al. 2011. Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance [J]. Geophys. Res. Lett., 38 (13): L13707, doi:10.1029/2011GL047835.
[27]  Pozo-Vázquez D, Esteban-Parra M J, Rodrigo F S, et al. 2001. The association between ENSO and winter atmospheric circulation and temperature in the North Atlantic region [J]. J. Climate, 14: 3408-3420.
[28]  Schneider B, Latif M, Schmittner A. 2007. Evaluation of different methods to assess model projections of the future evolution of the Atlantic meridional overturning circulation [J]. J. Climate, 20: 2121-2132. doi:10.1175/JCLI4128.1.
[29]  Smith T M, Reynolds R W. 2005. A global merged land-air-sea surface temperature reconstruction based on historical observations (1880-1997) [J]. J. Climate, 18: 2021-2036.
[30]  Solomon A, McCreary J P Jr, Kleeman R, et al. 2003. Interannual and decadal variability in an intermediate coupled model of the Pacific region [J]. J. Climate, 16: 383-405.
[31]  Solomon S, Rosenlof K H, Portmann R W, et al. 2010. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Science, 327 (5970): 1219-1223, doi:10.1126/science. 1182488.
[32]  Taylor K E, Stouffer R J, Meehl G A. 2009. A summary of the CMIP5 experiment design [J]. http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_ CMIP5_design.pdf.
[33]  Trenberth K E. 2009. An imperative for climate change planning: Tracking Earth’s global energy [J]. Current Opinion in Environmental Sustainability, 1 (1): 19-27, doi:10.1016/j.cosust.2009.06.001.
[34]  Trenberth K E, Fasullo J T. 2010. Tracking earth’s energy [J]. Science, 328 (5976): 316-317, doi:10.1126/science.1187272.
[35]  Trenberth K E, Fasullo J T. 2011. Tracking earth’s energy: From El Ni?o to global warming [J]. Surv. Geophys., 33: 413-426, doi:10.1007/s10712- 011-9150-2.
[36]  Trenberth K E, Fasullo J T, Kiehl J. 2009. Earth’s global energy budget [J]. Bull. Amer. Meteor. Soc., 90: 311-323.
[37]  Wang D W, Cane M A. 2011. Pacific shallow meridional overturning circulation in a warming climate [J]. J. Climate, 24: 6424-6439, doi:10.1175/2011JCLI4100.1.
[38]  吴国雄, 孟文. 1998. 赤道印度洋—太平洋地区海气系统的齿轮式耦合和ENSO事件. I. 资料分析 [J]. 大气科学, 22 (4): 470-480. Wu Guoxiong, Meng Wen. 1998. Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO. Part I: Data analyses [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22 (4): 470-480.
[39]  Xie S P, Annamalai H, Schott F A, et al. 2002. Origin and predictability of South Indian Ocean climate variability [J]. J. Climate, 15 (8): 864-874.
[40]  Yu Y Q, Zhang X H, Guo Y F. 2004. Global coupled ocean-atmosphere general circulation models in LASG/IAP [J]. Adv. Atmos. Sci., 21: 444- 455.
[41]  Yu Y Q, Yu R C, Zhang X H, et al. 2002. A flexible coupled ocean- atmosphere general circulation model [J]. Adv. Atmos. Sci., 19: 169-190.
[42]  Yu Y Q, Zheng W P, Zhang X H, et al. 2007. LASG coupled climate system model FGCM-1. 0 [J]. Chinese Journal of Geophysics, 50: 1677-1687.
[43]  Yu Y Q, Zhi H, Wang B, et al. 2008. Coupled model simulations of climate changes in the 20th century and beyond [J]. Adv. Atmos. Sci., 25: 641-654.
[44]  Klinger B A, McCreary J P Jr, Kleeman R. 2002. The relationship between oscillating subtropical wind stress and equatorial temperature [J]. J. Phys. Oceanogr., 32: 1507-1521.
[45]  Knight J, Kennedy J J, Folland C, et al. 2009. Do global temperature trends over the last decade falsify climate predictions? [J]. Bull. Amer. Meteor. Soc., 90 (8): S22-S23.
[46]  Knox R S, Douglass D H. 2010. Recent energy balance of earth [J]. International Journal of Geosciences, 1 (3): 99-101, doi:10.4236/ijg. 2010.13013.
[47]  Kushnir Y. 1994. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions [J]. J. Climate, 7: 141-157.
[48]  Latif M, Barnett T P. 1995. Interactions of the tropical oceans [J]. J. Climate, 8: 952-964.
[49]  Lau N C. 1997. Interactions between global SST anomalies and the midlatitude atmospheric circulation [J]. Bull. Amer. Meteor. Soc., 78: 21-33.
[50]  Lau N C, Nath M J. 2001. Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea-air coupling [J]. J. Climate, 14: 2846-2866.
[51]  Lean J L, Rind D H. 2009. How will Earth’s surface temperature change in future decades? [J]. Geophys. Res. Lett., 36 (15): L15708, doi:10.1029/ 2009GL038932.
[52]  Levitus S, Antonov J I, Boyer T P, et al. 2009. Global ocean heat content 1955-2007 in light of recently revealed instrumentation problems [J]. Geophys. Res. Lett., 36: L07608, doi:10.1029/2008GL037155.
[53]  Li L J, Lin P F, Yu Y Q, et al . 2013. The flexible global ocean-atmosphere- land system model: Grid point version 2: FGOALS-g2. Atmos. Adv. Sci. In Press.
[54]  Lin P F, Yu Y Q, Liu H L. 2012. Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2 [J]. Adv. Atmos. Sci., doi:10.1007/s00376-012-2042-7.
[55]  Liu H L, Zhang X H, Li W, et al. 2004. An eddy-permitting oceanic general circulation model and its preliminary evaluation [J]. Adv. Atmos. Sci., 21: 675-690.
[56]  Liu H L, Lin P F, Yu Y Q, et al. 2012a. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26 (3): 318-329, doi:10.1007/s13351-012-0305-y.
[57]  Liu J L, Alexander M. 2007. Atmospheric bridge, oceanic tunnel, and global climatic teleconnections [J]. Rev. Geophys., 45: RG2005, doi:10.1029/ 2005RG000172.
[58]  Liu Y M, Hu J, He B, et al. 2013. Seasonal evolution of the subtropical anticyclones in a climate system model FGOALS-s2 [J]. Adv. Atmos. Sci., (Submitted).
[59]  McPhaden M J, Zhang D X. 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean [J]. Nature, 415: 603-608.
[60]  Yu Y Q, Zheng W P, Wang B, et al. 2011. Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model [J]. Adv. Atmos. Sci., 28 (1): 99-117, doi:10.1007/s00376-010-9112-5.
[61]  Zhang D X, McPhaden M J. 2006. Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models [J]. Ocean Modelling, 15: 250-273.
[62]  周天军, 王在志, 宇如聪, 等. 2005. 基于LASG/IAP大气环流谱模式的气候系统模式 [J]. 气象学报, 63: 702-715. Zhou Tianjun, Wang Zaizhi, Yu Rucong, et al. 2005. The climate system model FGOALS-s using LASG/IAP spectral AGCM SAMIL as its atmospheric component [J]. Acta Meteorologica Sinica (in Chinese), 63: 702-715.
[63]  Zhou T J, Wu B, Wen X Y, et al. 2008. A fast version of LASG/IAP climate system model and its 1000-year control integration [J]. Adv. Atmos. Sci., 25 (4): 655-672.
[64]  周天军, 宇如聪, 郜永琪, 等. 2006. 北大西洋年际变率的海气耦合模式模拟II: 热带太平洋强迫 [J]. 气象学报, 64 (1): 18-30. Zhou Tianjun, Yu Rucong, Gao Yongqi, et al. 2006. Ocean-atmosphere coupled model simulation of North Atlantic interannual variability. II: Tropical teleconnection [J]. Acta Meteorologica Sinica (in Chinese), 64 (1): 18-30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133