全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

东亚地区云垂直结构的CloudSat卫星观测研究

DOI: 10.3878/j.issn.1006-9895.2012.11188

Keywords: 云垂直结构,云量,CloudSat,云观测卫星

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用卫星CloudSat同时结合了与其同轨道的卫星CALIPSO(Cloud-AerosolLidarandInfraredPathfinderSatelliteObservations)2007至2009年3年的观测资料,将东亚地区划分为六个研究区域,着重研究了东亚地区云垂直分布的统计特征.结果表明:东亚地区不同高度的云量之和具有明显的季节变化趋势,夏季最大,春秋次之,冬季最小.海洋上空的单层云量最大值出现在冬季,而在陆地上空则出现在夏季.从云出现概率来看,东亚地区单层云出现的概率在春、夏、秋、冬季节依次为52.2%,48.1%,49.2%和51.9%,而多层(2层和2层以上)云出现的概率在春、夏、秋、冬季节分别为24.2%,31.0%,19.7%,15.8%.云出现的总概率和多层云出现的概率,在六个区域都呈现出夏季最大,冬季最小;对4个季节都呈现出东亚南部比东亚北部大,海洋上空比陆地上空大的特点,表明云出现的总概率的季节变化主要由多层云出现的概率的变化决定.东亚地区云系统中最高层云云顶的高度,在夏季最高,为15.9km,在冬季最低,为8.2km;在东亚南部和海洋上空较高,平均为15.1km;在东亚北部较低,平均为12.1km,且呈现东亚南北部之间差异较大的特点.东亚地区云系统的云层厚度基本位于1km到3km之间,且夏季大,冬季小;对同一季节,不同区域的云层厚度差别较小;当多层云系统中的云层数目增加时,云层的平均厚度减少,且较高层的云层平均厚度大于较低层的.云层间距的概率分布基本呈单峰分布,出现峰值范围的云层间距在1到3km之间,各区域之间没有明显差别,季节变化也不大.本文的研究为在气候模式中精确描述云的垂直结构提供了有用的参数化依据.

References

[1]  Randall D A, Harshvardhan, Dazlich D A. 1989. Interactions among radiation, convection, and large-scale dynamics in a general circulation model [J]. J. Atmos. Sci., 46: 1943-1970.
[2]  Slingo A, Slingo J M. 1988. The response of a general circulation model to cloud longwave radiative forcing. Part I: Introduction and initial experiments [J]. Quart. J. Roy. Meteor. Soc., 114: 1027-1062.
[3]  汪会, 罗亚丽, 张人禾. 2011. 用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征 [J]. 大气科学, 35 (6): 1117- 1131. Wang Hui, Luo Yali, Zhang Renhe. 2011. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (6): 1117-1131.
[4]  Wang J H, Rossow W B. 1998. Effects of cloud vertical structure on atmospheric circulation in the GISS GCM [J]. J. Climate, 11: 3010-3029.
[5]  Wang J H, Rossow W B, Zhang Y C. 2000. Cloud vertical structure and its variations from a 20-yr global rawinsonde dataset [J]. J. Climate, 13: 3041-3056.
[6]  Wielicki B A, Harrison E F, Cess R D, et al. 1995. Mission to planet Earth: Role of clouds and radiation in climate [J]. Bull. Amer. Meteor. Soc., 76: 2125-2153.
[7]  张华, 荆现文. 2010. 气候模式中云的垂直重叠假定对模拟的地—气辐射的影响研究 [J]. 大气科学, 34 (3): 520-532. Zhang Hua, Jing Xianwen. 2010. Effect of cloud overlap assumptions in climate models on modeled earth-atmosphere radiative fields [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34 (3): 520-532.
[8]  赵高祥,汪宏七. 1994.云和辐射(Ⅱ): 环流模式中的云和云辐射参数化[J].大气科学,18 (增刊): 933-958. Zhao Gaoxiang,Wang Hongqi. 1994. Cloud and radiation-Ⅱ: Cloud and cloud radiation parameter-izations in general circulation models[J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese),18 (Suppl.): 933-958.
[9]  赵济. 1995. 中国自然地理(3版) [M]. 北京: 高等教育出版社, 180-187. Zhao Ji. 1995. Chinese Nature Geography (in Chinese) [M]. 3rd ed. Beijing: Higher Education Press, 180-187.
[10]  Arking A. 1991. The radiative effects of clouds and their impact on climate [J]. Bull. Amer. Meteor. Soc., 72: 795-813.
[11]  Barker H W. 2008a. Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data [J]. J. Geophys. Res., 113: D00A01, doi: 10.1029/2207JD009677.
[12]  Barker H W. 2008b. Representing cloud overlap with an effective decorrelation length: An assessment using CloudSat and CALIPSO data [J]. J. Geophys. Res., 113: D24205, doi: 10.1029/2008JD010391.
[13]  Barker H W, Stephens G L, Fu Q. 1999. The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry [J]. Quart. J. Roy. Meteor. Soc., 125: 2127-2152.
[14]  Cess R D, Potter G L, Blanchet J P, et al. 1989. Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models [J]. Science, 245: 513-516.
[15]  Cess R D, Potter G L, Blanchet J P, et al. 1990. Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models [J]. J. Geophys. Res., 95: 16601-16615.
[16]  Forster P, Ramaswamy V, Artaxo P, et al. 2007. Changes in atmospheric constituents and in radiative forcing [M]// Solomon S, Qin D, Manning M, et al, Eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter- governmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.
[17]  石广玉. 2007. 大气辐射学 [M]. 北京: 科学出版社, 302-318. Shi Guangyu. 2007. Atmospheric Radiation (in Chinese) [M]. Beijing: Science Press, 302-318.
[18]  荆现文, 张华, 郭品文. 2009. 气候模式中云的次网格结构对全球辐射影响的研究 [J]. 气象学报, 67 (6): 1058-1068. Jing Xianwen, Zhang Hua, Guo Pinwen. 2009. A study of the effect of sub-grid cloud structure on global radiation in climate models [J]. Acta Meteorologica Sinica (in Chinese), 67 (6): 1058-1068.
[19]  李积明, 黄建平, 衣育红, 等. 2009. 利用星载激光雷达资料研究东亚地区云垂直分布的统计特征 [J]. 大气科学, 33 (4): 698-707. Li Jiming, Huang Jianping, Yi Yuhong, et al. 2009. Analysis of vertical distribution of cloud in East Asia by space-based lidar data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (4): 698-707.
[20]  Liang X Z, Wang W C. 1997. Cloud overlap effects on general circulation model climate simulations [J]. J. Geophys. Res., 102: 11039-11047.
[21]  刘玉芝, 石广玉, 赵剑琦. 2007. 一维辐射对流模式对云辐射强迫的数值模拟研究 [J]. 大气科学, 31 (3): 486-494. Liu Yuzhi, Shi Guangyu, Zhao Jianqi. 2007. A study of the radiative forcing of clouds by using a one-dimensional radiative-convective model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (3): 486-494.
[22]  Luo Y L, Zhang R H, Wang H. 2009. Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat CALIPSO data [J]. J. Climate, 22: 1052- 1064.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133