全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2014 

一次超级单体雹暴观测分析和成雹区识别研究

DOI: 10.3878/j.issn.1006-9895.1402.13107

Keywords: 超级单体,成雹区识别,悬挂回波,降雹概率(POH)

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用多普勒雷达资料,结合探空和常规资料,对2011年4月17日一次超级单体雹暴的流场和回波结构演变特征进行了详细研究,主要结果:该雹暴是在条件性不稳定和垂直风切变较大的环境条件下产生的右移风暴。雹云初生发展阶段,垂直剖面显示逐渐形成有组织化的斜上升气流促进雹云发展。成熟降雹阶段,雹云内形成一支强的斜上升气流和深厚的中气旋,主上升气流对应雹云的弱回波区。雹云维持典型的弱回波区—悬挂回波—回波墙特征结构。根据雷达径向速度和雹云移速订正得出的“零线”演变发现,随着雹云的发展,“零线”逐渐向悬挂回波靠近,并穿过悬挂回波,“零线”的走向为上翘式,附近“穴道”的汇集力较强,有利于降雹。通过对“零线”位置的判断可分析有利成雹的区域。根据高低空两层强回波的水平错位,利用两高度强中心连线所作剖面能快速准确得出特征剖面,并将0℃层以上6km高度处降雹潜势达到100%的45dBZ的区域识别为成雹区,与降雹实况对比发现识别效果良好。

References

[1]  洪延超, 肖辉, 李宏宇, 等. 2002. 冰雹云中微物理过程研究 [J]. 大气 科学, 26 (3): 421-432. Hong Yanchao, Xiao Hui, Li Hongyu, et al. 2002. Studies on microphysical processes in hail cloud [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26 (3): 421-432.
[2]  Browning K A. 1962. Cellular structures of convective storms [J]. Meteor. Mag., 91: 341-350.
[3]  Browning K A. 1963a. Airflow and structure of a tornadic storm [J]. Atmos. Sci., 20: 533-545.
[4]  Browning K A. 1963b. The growth of large hail within a steady updraught [J]. Quart. J. Roy. Meteor. Soc., 89: 490-506.
[5]  Browning K A. 1976. Airflow and hail growth in supercell storms and some implications for hail suppression [J]. Quart. J Roy. Meteor. Soc., 102: 499-533.
[6]  Browning K A, Ludlam F H, Macklin W C. 1963. The density and structure of hailstones [J]. Quart. J. Roy. Meteor. Soc., 89: 75-84.
[7]  Dixon M, Wiener G. 1993. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology [J]. J. Atmos. Ocea. Tech., 10: 785-797.
[8]  Charles A. Doswell III. 2001. Severe Convective Storms—An Overview [M]// Meteorological Monographs.Volume 28, Issue 50 (November 2001). 1-26 樊鹏, 肖辉. 2005. 雷达识别渭北地区冰雹云技术研究 [J]. 气象, 31 (7): 16-19. Fan Peng, Xiao Hui. 2005. Study of hail cloud identification in the Weibei area, Shaanxi Province by radar echoes [J]. Meteorological Monthly (in Chinese), 31 (7): 16-19.
[9]  冯晋勤, 汤达章, 王新强, 等. 2010. 新一代天气雷达超级单体风暴中气 旋特征分析 [J]. 大气科学学报, 33 (6): 738-744. Feng Jinqin, Tang Dazhang, Wang Xinqiang, et al. 2010. Mesocyclone features of supercell storms from CINRAD/SA [J]. Transactions of Atmospheric Sciences (in Chinese), 33 (6): 738-744.
[10]  葛润生, 姜海燕, 彭红. 1998. 北京地区雹暴气流结构的研究 [J]. 应用 气象学报, 9 (1): 1-7. Ge Runsheng, Jiang Haiyan, Peng Hong. 1998. Flow structure of hailstorm in Beijing area [J]. Quarterly Journal of Applied Meteorology (in Chinese), 9 (1): 1-7.
[11]  郭学良, 黄美元, 洪延超, 等. 2001a. 三维冰雹分档强对流云数值模式 研究I. 模式建立及冰雹的循环增长机制 [J]. 大气科学, 25 (5):707-720. Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001a. A study of three-dimensional hail-category hailstorm model. Part I. Model description and the mechanism of hail recirculation growth [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (5): 707-720.
[12]  郭学良, 黄美元, 洪延超, 等. 2001b. 三维冰雹分档强对流云数值模式 研究II. 冰雹粒子的分布特征 [J]. 大气科学, 25 (6): 856-864. Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. 2001b. A study of three-dimensional hail-category hailstorm model. Part II. Characteristics of hail-category size distribution. [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (6): 856-864.
[13]  Knupp K R, Cotton W R. 1982. An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure[J]. J. At???娮栠潓畣?央甬焠申愹渺?″倴愳渭″?椸甮樼楢敲??婥桭慯湮朠?夠慒瀬椠湄杯???ぬぬ???剁攠摉敉癉攮氠漱瀹洷改渮琠?潥晶?呲?吠?乨?獮祤獥瑲敳浴?慲湭搠?楶瑯獬?捴慩獯敮?慡灮灤氠業捥慳瑯楣潹湣?孯?嵥??呴牲慵湣獴慵捲瑥椠潡湳猠?潥晬??瑥浤漠獴灯栠整牯楲据?卤捯楧敥湮捥敳獩??楛湊??栠楍湯敮献攠????㈠????????祝?????4-1197.
[14]  刘术艳, 肖辉, 杜秉玉, 等. 2004. 北京一次强单体雹暴的三维数值模拟 [J]. 大气科学, 28 (3): 455-470. Liu Shuyan, Xiao Hui, Du Bingyu, et al. 2004. Three-dimensional numerical simulation of a strong convective storm in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (3): 455-470.
[15]  潘留杰, 朱伟军, 周毓荃, 等. 2010. 环北京地区八月风暴云的气候分布 特征 [J]. 高原气象, 29 (6): 1579-1586. Pan Liujie, Zhu Weijun, Zhou Yuquan, et al. 2010. Climatic characteristic of storm around Beijing Area in August [J]. Plateau Meteorology (in Chinese), 29 (6): 1579-1586.
[16]  Vasiloff S V, Brandes E A, Davies-Jones R P, et al. 1986. An investigation of the transition from multicell to supercell storms [J]. J. Climate Appl. Meteor., 25 (7): 1022-036.
[17]  王昂生, 徐乃璋. 1985. 强单体雹暴的研究 [J]. 大气科学, 9 (3): 260-267. Wang Angsheng, Xu Naizhang. 1985. The studies of strongcell hailstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 9 (3): 260-267. Weisman M L, Klemp J B. 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears [J]. Mon. Wea. Rev., 112: 2479-2498.
[18]  许焕斌, 段英. 2001. 冰雹形成机制的研究并论人工雹胚与自然雹胚的 “利益竞争”防雹假说 [J]. 大气科学, 25 (2): 277-288. Xu Huanbin, Duan Ying. 2001. The mechanism of hailstone’s formation and the hail-suppression hypothesis: “Beneficial competition” [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25 (2): 277-288.
[19]  许焕斌. 2012. 强对流云物理及其应用 [M]. 北京: 气象出版社. Xu Huanbin. 2012. The Physics of Severe Convective Storms and Its Application (in Chinese) [M]. Beijing: Meteorological Press.
[20]  郑媛媛, 俞小鼎, 方翀, 等. 2004. 一次典型超级单体风暴的多普勒天气雷达观测分析 [J]. 气象学报, 62 (4): 317-328. Zheng Yuanyuan, Yu Xiaoding, Fang Chong, et al. 2004. Analysis of a strong classic supercell storm with doppler weather radar data [J]. Acta Meteorologica Sinica (in Chinese), 62 (4): 317-328.
[21]  周毓荃, 潘留杰, 张亚萍. 2009. TITAN 系统的移植开发及个例应用 [J]. 大气科学学报, 32 (6): 752-76

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133