全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2014 

水汽含量对飑线组织结构和强度影响的数值试验

DOI: 10.3878/j.issn.1006-9895.2013.13187

Keywords: 飑线,数值模拟,雷暴高压,冷池,地面大风

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2009年6月3~4日一次产生大风、冰雹强对流天气的飑线个例进行数值试验,研究整层水汽含量及其垂直分布对中尺度对流系统的发生发展过程、组织类型和强度等的影响。本文的试验表明环境场中不同的水汽含量和垂直分布,会影响下沉气流和冷池的强度,从而影响对流的组织形态、维持时间和强度。整层水汽试验表明,增加(减少)水汽,对流增强(减弱),冷池和雷暴高压增强(减弱)导致大风增强(减弱)。增加水汽越多发展阶段冷池强度越强,最大风速越强,但成熟阶段后期冷池减弱的越快,层状云区的后部入流减弱,不利于雷暴大风的出现和维持。不同层次水汽试验表明,在保持整层水汽含量不变的情况下,线状对流和雷暴大风易发生在中层干、下层湿的环境中,这种层结条件对雷暴高压的增强有重要作用,但不利于整个对流系统的长时间维持。

References

[1]  James R P, Markowski P M, Fritsch J M. 2006. Bow echo sensitivity to ambient moisture and cold pool strength [J]. Mon. Wea. Rev., 134 (3): 950-964.
[2]  金龙, 赵坤, 谢利平, 等. 2013. 一次弓形回波结构和演变机制的多普勒雷达观测分析 [J]. 气象科学, 33 (6):591-601. Jin Long, Zhao Kun, Xie Liping, et al. 2013. Radar observed structure and evolution mechanism of a bow echo [J]. Journal of the Meteorological Sciences (in Chinese), 33 (6):591-601.
[3]  Johnson R H, Aves S L, Ciesielski P E, et al. 2005. Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon [J]. Mon. Wea. Rev., 133 (1): 131-148.
[4]  Klimowski B A, Hjelmfelt M R, Bunkers M J. 2004. Radar observations of the early evolution of bow echoes [J]. Wea. Forecasting, 19 (4): 727-734.
[5]  梁建宇, 孙建华. 2012. 2009年6月一次飑线过程灾害性大风的形成机制 [J]. 大气科学, 36 (2): 316-336. Liang Jianyu, Sun Jianhua. 2012. The formation mechanism of damaging surface wind during the squall line in June 2009 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2): 316-336.
[6]  刘香娥, 郭学良. 2012. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究 [J]. 大气科学, 36 (6): 1150-1164, doi:10.3878/j.issn. 1006-9895.2012.11212. Liu Xiang\'e, Guo Xueliang. 2012. Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (6): 1150-1164.
[7]  Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128 (10): 3413-3436.
[8]  Robe F R, Emanuel K A. 2001. The effect of vertical wind shear on radiative-convective equilibrium states [J]. J. Atmos. Sci., 58 (11): 1427-1445.
[9]  Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45 (3): 463-485.
[10]  Schumacher R S, Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems [J]. Mon. Wea. Rev., 133 (4): 961-976.
[11]  Skamarock W C, Klemp J B, Dudhia J, et al. 2005. A description of the Advanced Research WRF Version 2 [R]. NCAR Tech. Note, NCAR/TN-468+STR, 88pp.
[12]  Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring [J]. J. Atmos. Sci., 42 (16): 1711-1732.
[13]  Coniglio M C, Stensrud D J. 2001. Simulation of a progressive derecho using composite initial conditions [J]. Mon. Wea. Rev., 129 (7): 1593-1616.
[14]  丁一汇, 李鸿洲, 章名立, 等. 1982. 我国飑线发生条件的研究 [J]. 大气科学, 6 (1): 18-27. Ding Yihui, Li Hongzhou, Zhang Mingli, et al. 1982. A study on the genesis conditions of squall-line in China [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 6 (1): 18-27.
[15]  Duda J D, Gallus W A Jr. 2010. Spring and summer midwestern severe weather reports in supercells compared to other morphologies [J]. Wea. Forecasting, 25 (1): 190-206.
[16]  Fovell R G, Ogura Y. 1989. Effect of vertical wind shear on numerically simulated multicell storm structure [J]. J. Atmos. Sci., 46 (20): 3144-3176.
[17]  Houze R A, Biggerstaff M I, Rutledge S A, et al. 1989. Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems [J]. Bull. Amer. Meteor. Soc., 70 (6): 608-619.
[18]  Smull B F, Houze R A Jr. 1985. A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations [J]. Mon. Wea. Rev., 113 (1): 117-133.
[19]  Smull B F, Houze R A Jr. 1987. Rear inflow in squall lines with trailing stratiform precipitation [J]. Mon. Wea. Rev., 115 (12): 2869-2889.
[20]  孙虎林, 罗亚丽, 张人禾, 等. 2011. 2009年6月3~4日黄淮地区强飑线成熟阶段特征分析 [J]. 大气科学, 35 (1): 105-120. Sun Hulin, Luo Yali, Zhang Renhe, et al. 2011. Analysis on the mature-stage features of the severe squall line occurring over the Yellow River and Huaihe River basins during 3-4 June 2009 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (1): 105-120.
[21]  Takemi T. 2006. Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions [J]. Atmos. Res., 82 (1-2): 37-54.
[22]  Takemi T. 2007. A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions [J]. Atmos. Res., 84 (4): 374-389.
[23]  王秀明, 俞小鼎, 周小刚, 等. 2012. “6·3”区域致灾雷暴大风形成及维持原因分析 [J]. 高原气象, 31 (2): 504-514. Wang Xiuming, Yu Xiaoding, Zhou Xiaogang, et al. 2012. Study on the formation and evolution of ‘6.3\' damage wind [J]. Plateau Meteorology (in Chinese), 31 (2): 504-514.
[24]  Weisman M L, Rotunno R. 2004. “A theory for strong long-lived squall lines” revisited [J]. J. Atmos. Sci., 61 (4): 361-382.
[25]  Weisman M L, Klemp J B, Rotunno R. 1988. Structure and evolution of numerically simulated squall lines [J]. J. Atmos. Sci., 45 (14): 1990-2013.
[26]  郑淋淋, 孙建华. 2013. 干、湿环境下中尺度对流系统发生的环流背景和地面特征分析 [J]. 大气科学, 37 (4): 891-904, doi:10.3878/j.issn. 1006-9895.2012.12090. Zheng Linlin, Sun Jianhua. 2013. Characteristics of synoptic and surface circulation of mesoscale convective systems in dry and moist environmental conditions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (4): 891-904,
[27]  Zheng L L, Sun J H, Zhang X L, et al. 2013. Organizational modes of mesoscale convective systems over Central East China [J]. Wea. Forecasting, 28 (5): 1081-1098.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133