为了进一步认识闪电和固、液态降水的关系,本文利用三维雷暴云动力-电耦合数值模式,通过设置敏感性试验组,模拟了一次雷暴过程,分析雷暴中闪电和降水的特征,以及闪电和固、液态降水对垂直风速的依赖关系,探讨闪电与固、液态降水的时空分布关系和单次闪电表征的降水量(RPF:rainyields per flash)。结果表明:对流云降水中,液态降水占主要部分,但固态降水比液态降水对于垂直风速的依赖性更强。随着对流的增强,固态降水在总降水中占的比重越来越大。首次放电时间不断提前,闪电峰值落后垂直风速峰值,总闪数一开始随对流的增强而增加,对流一旦增强到一定程度,总闪数则逐渐减小。固态降水和液态降水的开始时间和峰值时间均随着对流的增强而不断提前,而液态降水出现时间和峰值时间均提前于固态降水。雷暴云首次放电的时间滞后于液态降水,而闪电峰值提前固态降水峰值或与固态降水峰值同时产生。雷暴云中的放电活动集中在强降水区域前缘的较弱降水区,强降水区对应的闪电较少,对流的增强会使降水区域面积、降水量和降水强度增加。由于液态降水总量远大于固态降水总量,固、液态RPF的数值相差达到一个量级,但单位时间内固态降水和液态降水增加的速率相近。在单位时间内闪电次数越多,RPF则越小,而固态RPF和闪电次数的线性相关性明显好于液态RPF,所以利用固态降水可以更好地预报闪电。这些结果有助于进一步认识闪电和降水的关系,并可为闪电预报提供新的思路
References
[1]
Chiu C S. 1978. Numerical study of cloud electrification in an axsymmetric, time-dependent cloud model[J]. J. Geophys. Res., 83(C10):5025-5049.
[2]
Deierling W, Petersen W A. 2008. Total lightning activity as an indicator of updraft characteristics[J]. J. Geophys. Res., 113(D16):D16210, doi:10.1029/2007JD009598.
[3]
Gungle B, Krider E P. 2006. Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms[J]. J. Geophys. Res., 111(19):D19203, doi:10.1029/2005JD006802.
[4]
郭凤霞, 王昊亮, 孙亮, 等. 2015. 积云模式下三维闪电分形结构的数值模拟[J]. 高原气象, 34(2):534-545. Guo Fengxia, Wang Haoliang, Sun jin, et al. 2015. Simulation of three-dimensional fractal structure of lightning in a thunderstorm model[J]. Plateau Meteorology(in Chinese), 34(2):534-545, doi:10.7522/j.issn.1000-0534.2013.00193.
[5]
郭凤霞, 张义军, 言穆弘, 等. 2007. 青藏高原雷暴云降水与地面电场的观测和数值模拟[J]. 高原气象, 26(2):257-263. Guo Fengxia, Zhang Yijun, Yan Muhong, et al. 2007. Numerical study and observation of the relationship between surface electric field and precipitation in thunderstorm over Qinghai-Xizang Plateau[J]. Plateau Meteorology(in Chinese), 26(2):257-263.
[6]
郭凤霞, 张义军, 言穆弘. 2010. 雷暴云首次放电前两种非感应起电参数化方案的比较[J]. 大气科学, 34(2):361-373. Guo Fengxia, Zhang Yijun, Yan Muhong. 2010. Comparison of two parameterization schemes for noninductive mechanism before the first discharge in a simulated single cell storm[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 34(2):361-373.
[7]
Holle R L, Watson A I, López R E, et al. 1994. The life cycle of lightning and severe weather in a 3-4 June 1985 PRE-STORM mesoscale convective system[J]. Mon. Wea. Rev., 122(8):1798-1808.
[8]
孔凡铀, 黄美元, 徐华英. 1990. 对流云中冰相过程的三维数值模拟Ⅰ:模式建立及冷云参数化[J]. 大气科学, 14(4):441-453. Kong Fanyou, Huang Meiyuan, Xu Huaying. 1990. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds. Part I:Model establishment and ice phase parameterization[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 14(4):441-453.
[9]
孔凡铀, 黄美元, 徐华英. 1991. 对流云中冰相过程的三维数值模拟Ⅱ:繁生过程作用[J]. 大气科学, 15(6):78-88. Kong Fanyou, Huang Meiyuan, Xu Huaying. 1991. Three-dimensional numerical simulation of ice phase microphysics in cumulus clouds. Part Ⅱ:Effects of multiplication processes[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 15(6):78-88.
[10]
Lang T J, Rutledge S A. 2002. Relationships between convective storm kinematics, precipitation, and lightning[J]. Mon. Weather Rev., 130(10):2492-2506.
[11]
Lang T J, Miller L J, Weisman M, et al. 2004. The severe thunderstorm electrification and precipitation study[J]. Bull. Amer. Meteor. Soc., 85(8):1107-1125.
[12]
李如祥. 1990. 补偿性下沉气流对积云发展影响的数值模拟[J]. 气象科学, 10(1):92-101. Li Ruxiang. 1990. A numerical simulation of the influence of compensative downdraft on cumulus development[J]. Scientia Meteorologica Sinica(in Chinese), 10(1):92-101.
[13]
López R E, Ortíz R, Otto W D, et al. 1991. The lightning activity and precipitation yield of convective cloud systems in central Florida[C]//25th International Conf. on Radar Meteorology. Boston:Amer. Meteor. Soc., 907-910.
[14]
Mansell E R, MacGorman D R, Ziegler C L, et al. 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J. Geophys. Res., 110(D12):D12101.
[15]
Petersen W A, Rutledge S A. 1998. On the relationship between cloud-to-ground lightning and convective rainfall[J]. J. Geophys. Res., 103(D12):14025-14040.
[16]
Piepgrass M V, Krider E P, Moore C B. 1982. Lightning and surface rainfall during Florida thunderstorms[J]. J. Geophys. Res., 87(C13):11193-11201.
[17]
Pineda N, Rigo T, Bech J, et al. 2007. Lightning and precipitation relationship in summer thunderstorms:Case studies in the North Western Mediterranean region[J]. Atmos. Res., 85(2):159-170.
[18]
Rakov V A, Uman M A. 2003. Lightning:Physics and Effects[M]. Cambridge:Cambridge University Press, 44, 81-82.
[19]
Rivas S L, Pablo F D. 2003. Analysis of convective precipitation in the western Mediterranean Sea through the use of cloud-to-ground lightning[J]. Atmos. Res., 66(3):189-202.
[20]
Saunders C P R, Keith W D, Mitzeva R P. 1991. The effect of liquid water on thunderstorm charging[J]. J. Geophys. Res., 96(D6):11007-l1017.
[21]
Soriano L R, de Pablo F, Díez E G. 2001. Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula[J]. Mon. Wea. Rev., 129(12):2998-3003.
[22]
Soula S, Chauzy S. 2001. Some aspects of the correlation between lightning and rain activities in thunderstorms[J]. Atmos. Res., 56(1-4):355-373.
[23]
Stolzenburg M. 1994. Observations of high ground flash densities of positive lightning in summertime thunderstorms[J]. Mon. Wea. Rev., 122(8):1740-1750.
[24]
孙安平. 2000. 强风暴动力和电耦合数值模拟研究[D]. 中科院寒区旱区环境与工程研究所博士研究生学位论文. Sun Anping. 2000. Numerical study in a three-dimensional dynamic-electrification coupled model[D]. Ph. D. dissertation(in Chinese), Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences.
[25]
孙安平, 言穆弘, 张义军, 等. 2002a. 三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案[J]. 气象学报, 60(6):722-731. Sun Anping, Yan Muhong, Zhang Yijun, et al. 2002a. Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model. I:Model description and parameterization of electrical processes[J]. Acta Meteorologica Sinica(in Chinese), 60(6):722-731.
[26]
孙安平, 言穆弘, 张义军, 等. 2002b. 三维强风暴动力-电耦合数值模拟研究Ⅱ:电结构形成机制[J]. 气象学报, 60(6):732-739. Sun Anping, Yan Muhong, Zhang Yijun, et al. 2002b. Numerical study of thunderstorm electrification with a three-dimensional dynamics and electrification coupled model. Ⅱ:Mechanism of electrical structure[J]. Acta Meteorologica Sinica(in Chinese), 60(6):732-739.
[27]
孙安平, 张义军, 言穆弘. 2004. 雷暴电过程对动力发展的影响研究[J]. 高原气象, 23(1):26-32. Sun Anping, Zhang Yijun, Yan Muhong. 2004b. Study on influence of electrical processes on dynamical development in thunderstorm[J]. Plateau Meteorology(in Chinese), 23(1):26-32.
[28]
Tessendorf S A, Miller L J, Wiens K C, et al. 2005. The 29 June 2000 supercell observed during STEPS. Part I:Kinematics and microphysics[J]. J. Atmos. Sci., 62(12):4127-4150.
[29]
Wiens K C, Rutledge S A, Tessendorf S A. 2005. The 29 June 2000 supercell observed during STEPS. part Ⅱ:Lightning and charge structure[J]. J. Atmos. Sci., 62(12):4151-4177.
[30]
Williams E R, Rutledge S A, Geotis S G, et al. 1992. A radar and electrical study of tropical "hot towers"[J]. J. Atmos. Sci., 49(15):1386-1395.
[31]
Williams E R, Boldi B, Matlin A, et al. 1999. The behavior of total lightning activity in severe Florida thunderstorms[J]. Atmos. Res., 51(3-4):245-265.
[32]
肖辉, 王孝波, 周非非, 等. 2004. 强降水云物理过程的三维数值模拟研究[J]. 大气科学, 28(3):385-404. Xiao Hui, Wang Xiaobo, Zhou Feifei, et al. 2004. A three-dimensional numerical simulation on microphysical processes of torrential rainstorms[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 28(3):385-404.
[33]
言穆弘, 郭昌明, 葛正谟. 1996a. 积云动力和电过程二维模式研究Ⅰ. 理论模式[J]. 地球物理学报, 39(增刊):52-64. Yan Muhong, Guo Changming, Ge Zhengmo. 1996a. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model. I. Theory and model[J]. Acta Geophysica Sinica, 39(S):52-64.
[34]
言穆弘, 郭昌明, 葛正谟. 1996b. 积云动力和电过程二维模式研究Ⅱ. 计算结果[J]. 地球物理学报, 39(增刊):65-77. Yan Muhong, Guo Changming, Ge Zhengmo. 1996b. Numerical study of cloud dynamic-electrification in an axisymmetric, time-dependent cloud model. Ⅱ. Caculation results[J]. Acta Geophysica Sinica(in Chinese), 39(S):65-77.
[35]
袁铁, 郄秀书. 2010. 基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J]. 大气科学, 34(1):58-70. Yuan Tie, Qie Xiushu. 2010. TRMM-based study of lightning activity and its relationship with precipitation structure of a squall line in South China[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 34(1):58-70.
[36]
张义军, 言穆弘, 刘欣生. 1999. 雷暴中放电过程的模式研究[J]. 科学通报, 44(12):1322-1325. Zhang Yijun, Yan Muhong, Liu Xinsheng. 1999. Simulation study of discharge processes in the thunderstorm[J]. Chinese Science Bulletin, 44(22):2098-2102.
[37]
张义军, 孙安平, 言穆弘, 等. 2004. 雷暴电活动对冰雹增长影响的数值模拟研究[J]. 地球物理学报, 47(1):25-32. Zhang Yijun, Sun Anping, Yan Muhong, et al. 2004. Numerical modeling for effects of electric activity during thunderstorms upon the growth of hail particles[J]. Chinese J. Geophys.(in Chinese), 47(1):25-32.
[38]
郑栋, 张义军, 马明, 等. 2007. 大气环境层结对闪电活动影响的模拟研究[J]. 气象学报, 65(4):621-632. Zheng Dong, Zhang Yijun, Ma Ming, et al. 2007. Simulation study on the influence of atmospheric stratification on lightning activity[J]. Acta Meteorologica Sinica(in Chinese), 65(4):621-632.
[39]
郑栋, 张义军, 孟青, 等. 2010. 北京地区雷暴过程闪电与地面降水的相关关系[J]. 应用气象学报, 21(3):287-297. Zheng Dong, Zhang Yijun, Meng Qing, et al. 2010. Relationship between lightning activities and surface precipitation in thunderstorm weather in Beijing [J]. Journal of Applied Meteorological Science(in Chinese), 21(3):287-297.
[40]
周志敏, 郭学良. 2009. 强雷暴云中电荷多层分布与形成过程的三维数值模拟研究[J]. 大气科学, 33(3):600-620. Zhou Zhimin, Guo Xueliang. 2009. A three-dimensional modeling study of multi-layer distribution and formation processes of electric charges in a severe thunderstorm[J]. Chinese Journal of Atmospheric Sciences(in Chinese), 33(3):600-620.