净生态系统碳通量(NEE)的计算对于准确模拟区域碳通量和大气CO2浓度的时空变化至关重要。本文利用中尺度大气-温室气体耦合模式WRF-GHG(Weather Research and Forecasting Model with Greenhouse Gases Module),对2010年7月28日至2010年8月2日期间影响长江三角洲地区大气CO2浓度及时空分布的各种过程进行了详尽模拟。结果表明,植被光合呼吸模型(VPRM)能模拟不同植被下垫面NEE的日变化;WRF-GHG模拟的大气CO2浓度日变化与观测相吻合,但低估了大气CO2浓度5~15 ppm(ppm表示10-6),这可能与人为排放源的低估、VPRM参数的不确定性以及气象场模拟的不准确性有关。太湖和植被覆盖较好的地区如浙江北部山区是该地区的主要碳汇,而城市为CO2的主要排放源。太湖和陆地生态系统对区域内碳循环起到一定的调节作用,减缓区域大气CO2浓度的升高。此外,局地气象条件如湖陆风对太湖周边地区大气CO2浓度有显著影响
References
[1]
Aber J D, Federer C A. 1992. A generalized, lumped-parameter model of photosynthesis, evapotranspiration, and net primary production in temperate and boreal forest ecosystems[J]. Oecologia, 92 (4):463-474.
[2]
Ahmadov R, Gerbig C, Kretschmer R, et al. 2007. Mesoscale covariance of transport and CO2 fluxes:Evidence from observations and simulations using the WRF-VPRM coupled atmosphere-biosphere model[J]. J. Geophys. Res.-Atmos, 112, D22107, doi:10.1029/2007JD008552.
[3]
Ahmadov R, Gerbig C, Kretschmer R, et al. 2009. Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2[J]. Biogeosciences, 6 (5):807-817, doi:10.5194/bg-6-807-2009.
[4]
Ballantyne A P, Alden C B, Miller J B, et al. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the last 50 years[J]. Nature, 488 (7409):70-72.
[5]
Beck V, Koch T, Kretschmer R, et al. 2011. The WRF Greenhouse Gas Model (WRF-GHG)[R]. Technical Report No. 25, Max Planck Institute for Biogeochemistry, Jena, Germany.
[6]
Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the PENN State-NCAR MM5 modeling system. Part I:Model implementation and sensitivity[J]. Mon. Wea. Rev., 129:569-585.
[7]
Chevallier F, Bréon F M, Rayner P J. 2007. The contribution of the orbiting carbon observatory to the estimation of CO2 sources and sinks:Theoretical study in a variational data assimilation framework[J]. J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.
[8]
Crisp D, Atlas R M, Breon F M, et al. 2004. The Orbiting Carbon Observatory (OCO) mission[J]. Adv. Space Res., 34 (4):700-709.
[9]
代成颖, 高志球, 王琳琳, 等. 2009. 两种土壤温度算法的对比分析[J]. 大气科学, 33 (1):135-144. Dai Chengying, GAO Zhiqiu, WANG Linlin, et al. 2009. Intercomparison between two soil temperature algorithms[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (1):135-144.
[10]
Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 46 (20):3077-3107.
[11]
Etheridge D M, Steele L P, Langenfelds R L, et al. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn[J]. J. Geophys. Res., 101 (D2):4115-4128.
[12]
Geels C, Gloor M, Ciais P, et al. 2007. Comparing atmospheric transport models for future regional inversions over Europe-Part 1:Mapping the atmospheric CO2 signals[J]. Atmos. Chem. Phys, 7 (13):3461-3479.
[13]
Gerbig C, Lin J C, Munger J W, et al. 2006. What can tracer observations in the continental boundary layer tell us about surface-atmosphere fluxes?[J]. Atmos. Chem. Phys., 6 (2):539-554.
[14]
Grell G A, Peckham S E, McKeen S, et al. 2005. Fully coupled "online" chemistry within the WRF model[J]. Atmos. Environ., 39 (37):6957-6975.
[15]
Gurney K R, Law R M, Denning A S, et al. 2003. TransCom 3 CO2 inversion intercomparison:1. Annual mean control results and sensitivity to transport and prior flux information[J]. Tellus B, 55 (2):555-579,
[16]
Hauglustaine D A, Hourdin F, Jourdain L, et al. 2004. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model:Description and background tropospheric chemistry evaluation[J]. J. Geophys. Res., 109, D04314, doi:10.1029/2003JD003957.
[17]
Hansen J, Sato M, Ruedy R, et al. 2007. Dangerous human-made interference with climate:A GISS model study[J]. Atmos. Chem. Phys., 7 (9):2287-2312.
[18]
Hong S Y, Jimy D, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 132 (1):103-120.
[19]
Hong S Y, Yign N, Jimy D. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134 (9):2318-2341.
[20]
Houweling S, Dentener F J, Lelieveld J. 1998. The impact of non-methane hydrocarbon compounds on tropospheric photochemistry[J]. J. Geophys. Res., 103 (D9):10673-10696.
[21]
Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases:Calculations with the AER radiative transfer models[J]. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
[22]
IPCC. 2007. Climate Change 2007:The Physical Science Basis[M]. Solomon S, Qin D, Manning M, et al. Cambridge, UK and New York, USA:Cambridge University Press.
[23]
Jung M, Henkel K, Herold M, et al. 2006. Exploiting synergies of global land cover products for carbon cycle modeling[J]. Remote Sens. Environ., 101 (4):534-553.
[24]
Kain J S. 2004. The Kain-Fritsch convective parameterization:An update[J]. J. Appl. Meteor., 43 (1):170-181.
[25]
Krol M, Houweling S, Bregman B, et al. 2005. The two-way nested global chemistry-transport zoom model TM5:algorithm and applications[J]. Atmos. Chem. Phys., 5 (2):417-432, doi:10.5194/acp-5-417-2005.
[26]
Lauvaux T, Uliasz M, Sarrat C, et al. 2008. Mesoscale inversion:First results from the CERES campaign with synthetic data[J]. Atmos. Chem. Phys., 8 (13):3459-3471, doi:10.5194/acp-8-3459-2008.
[27]
Lee X, Liu S, Xiao W, et al. 2014. The Taihu Eddy Flux Network:An observational program on energy, water and greenhouse gas fluxes of a large freshwater lake[J]. Bulletin of American Meteorological Society, 95:1583-1594.
[28]
李香华. 2005. 太湖水-气界面温室气体通量及时空变化特征研究[D]. 河海大学硕士学位论文. Li Xianghua. 2005. Study of the greenhouse gas flux of water-air Interface and its spatio-temporal change in Taihu Lake[D]. M. S. thesis (in Chinese), Hohai University.
[29]
刘诚, 黄建平, 刁一伟, 等. 2015. 植被光合呼吸模型在千烟洲亚热带常绿针叶林的优化与验证[J]. 植物生态学报,待刊. Liu Cheng, Huang Jianping, Diao Yiwei, et al. 2015. Photosynthesis and respiration parameter optimization and evaluation of VPRM with the measurements at a coniferous-evergreen forest site[J]. Chinese Journal of Plant Ecology (in Chinese), in press.
[30]
Mahadevan P, Wofsy S C, Matross D M, et al. 2008. A satellite-based biosphere parameterization for net ecosystem CO2 exchange:Vegetation Photosynthesis and Respiration Model (VPRM)[J]. Global Biogeochemical Cycles, 22, GB2005, doi:10.1029/2006GB002735.
[31]
Marquis M, Tans P. 2008. Climate change:Carbon crucible[J]. Science, 320 (5875):460-461.
[32]
Peters W, Miller J B, Whitaker J, et al. 2005. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations[J]. J. Geophys. Res., 110, D24304, doi:10.1029/2005JD006157.
[33]
Raich J W, Rastetter E B, Melillo J M, et al. 1991. Potential net primary productivity in South America:Application of a global-model[J]. Ecol. Appl., 1 (4):399-429.
[34]
Raupach M R, Marland G, Ciais P, et al. 2007. Global and regional drivers of accelerating CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 104 (24):10288-10293.
[35]
Running S W, Thornton P E, Nemani R, et al. 2000. Global terrestrial gross and net primary productivity from the earth observing system[M]//Methods in Ecosystem Science. New York:Springer, 44-57.
[36]
Skamarock W C, Klemp J B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications[J]. J. Comput. Phys., 227 (7):3465-3485.
[37]
van Dijk A, Moene A F, de Bruin H A R. 2004. The principles of surface flux physics:Theory, practice and description of the ECPack library. Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands, 99 pp.
[38]
Webb E K, Pearman G I, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quart. J. Roy. Meteor. Soc., 106 (447):85-100.
[39]
Xiao X M, Hollinger D, Aber J, et al. 2004. Satellite-based modeling of gross primary production in an evergreen needle leaf forest[J]. Remote Sensing of Environment, 89 (4):519-534.
[40]
于贵瑞, 王秋凤, 朱先进. 2011. 区域尺度陆地生态系统碳收支评估方法及其不确定性[J]. 地理科学进展, 30 (1):103-113. Yu Guirui, Wang Qiufeng, Zhu Xianjin. 2011. Methods and uncertainties in evaluating the carbon budgets of regional terrestrial ecosystems[J]. Progress in Geography (in Chinese), 30 (1):103-113.