利用低光度相机首次观测到了2013年7月31日华北地区一次中尺度对流系统(MCS)上空产生的中高层Sprite放电现象。结合闪电定位、天气雷达等同步观测, 对一次MCS诱发的Sprite的形态学特征及其对应的母体闪电和雷暴系统的雷达回波特征等进行了详细分析。研究除发现了2例圆柱型、3例胡萝卜型和1例舞蹈型 Sprite外, 还发现了2例发光主体发育不完全的Y字型Sprite。估算的Sprite的底部平均高度低于61.8±3.5 km, 顶部平均高度为84.3±6.8 km。Sprite持续时间算术平均值为25.7±9.8 ms, 几何平均值为24.4 ms。Sprite的母体闪电均为正地闪, 峰值电流在+62.5~+106.2 kA之间, 算术平均值为+77.1±22.2 kA, 是本次MCS所有正地闪平均峰值电流的1.4倍。Sprite母体闪电的脉冲电荷矩变化(iCMC)在+475~+922 C km之间, 几何平均值为+571.0 C km。Sprite母体闪电发生在MCS雷达回波25~35 dBZ的层状云降水区, 弱回波(<30 dBZ)面积的突然增加对Sprite的产生有重要指示作用。Sprite易发生在MCS成熟—消散阶段正地闪比例(POP)显著增加的时段。在本次MCS消散阶段中, 有两个时间段可能有利于产生Sprite。在Sprite集中发生时间段, 北京闪电综合探测网(BLNET)探测到的正地闪比例为54.2%, 正地闪连续电流比例70.24%, 连续电流持续时间为58.17±50.31 ms, 有利于Sprite的产生
References
[1]
Boccippio D J, Williams E R, Heckman S J, et al. 1995. Sprites, ELF transients, and positive ground strokes [J]. Science, 269 (5227): 1088-1091, doi:10.1126/science.269.5227.1088.
[2]
Cummer S A, Inan U S. 1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics [J]. Geophys. Res. Lett., 24 (14): 1731-1734, doi:10.1029/97GL51791.
[3]
Cummer S A, Lyons W A. 2005. Implications of lightning charge moment changes for sprite initiation [J]. J. Geophys. Res.: Space Phys., 110 (A4): A04304, doi:10.1029/2004JA010812.
[4]
Hardman S F, Dowden R L, Brundell J B, et al. 2000. Sprite observations in the northern territory of Australia [J]. J. Geophys. Res.: Atmos., 105 (D4): 4689-4697, doi:10.1029/1999JD900325.
[5]
Hsu R R, Su H T, Chen A B, et al. 2003. Transient luminous events in the vicinity of Taiwan [J]. J. Atmos. Sol.-Terr. Phys., 65(5): 561-566, doi:10.1016/S1364-6826(02)00320-6.
[6]
Hu W, Cummer S A, Lyons W A, et al. 2002. Lightning charge moment changes for the initiation of sprites [J]. Geophys. Res. Lett., 29 (8): 120-1-120-4, doi:10.1029/2001GL014593.
[7]
刘冬霞, 郄秀书, 冯桂力, 等. 2008. 华北一次强对流天气系统的地闪时空演变特征分析 [J]. 高原气象, 27 (2): 358-364. Liu Dongxia, Qie Xiushu, Feng Guili, et al. 2008. Analyses on lightning temporal and spatial characteristics in the severe convective weather in North China [J]. Plateau Meteorology (in Chinese), 27 (2): 358-364.
[8]
Lu G P, Cummer S A, Li J B, et al. 2009. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system [J]. Geophys. Res. Lett., 36 (15), doi:10.1029/2009GL038880.
[9]
Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure [J]. J. Geophys. Res.: Atmos., 118 (12): 6607-6632, doi:10.1002/jgrd.50459.
[10]
Lyons W A. 1994. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video [J]. Geophys. Res. Lett., 21 (10): 875-878, doi:10.1029/94GL00560.
[11]
Lyons W A. 2006. The meteorology of transient luminous events—An introduction and overview [M]//Füllekrug M, Mareev E A, Rycroft M J. Sprites, Elves and Intense Lightning Discharges. Netherlands: Springer, 19-56.
[12]
Matsudo Y, Suzuki T, Hayakawa M, et al. 2007. Characteristics of Japanese winter sprites and their parent lightning as estimated by VHF lightning and ELF transients [J]. J. Atmos. Sol.-Terr. Phys., 69 (12): 1431-1446, doi:10.1016/j.jastp.2007.05.002.
[13]
Moudry D, Heavner M, Sentman D, et al. 1998. Morphology of sprites [J]. EOS Suppl., 79 (45): F136.
[14]
Neubert T, Allin T H, Stenbaek-Nielsen H, et al. 2001. Sprites over Europe [J]. Geophys. Res. Lett., 28 (18): 3585-3588, doi:10.1029/2001GL013427.
[15]
Neubert T, Allin T H, Blanc E, et al. 2005. Co-ordinated observations of transient luminous events during the EuroSprite 2003 campaign [J]. J. Atmos. Sol.-Terr. Phys., 67 (8-9): 807-820, doi:10.1016/j.jastp.2005. 02.004.
[16]
Qie X S, Zhao Y, Zhang Q L, et al. 2009. Characteristics of triggered lightning during Shandong artificial triggering lightning experiment (SHATLE) [J]. Atmos. Res., 91 (2-4): 310-315, doi:10.1016/j.atmosres. 2008.08.007.
[17]
Qie X S, Wang Z C, Wang D F, et al. 2013. Characteristics of positive cloud-to-ground lightning in Da Hinggan Ling forest region at relatively high latitude, northeastern China [J]. J. Geophys. Res.: Atmos., 118 (24): 13393-13404, doi:10.1002/2013JD020093.
[18]
Qin J Q, Celestin S, Pasko V P. 2013. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions [J]. J. Geophys. Res.: Space Phys., 118 (5): 2623-2638, doi:10.1029/2012JA017908.
[19]
S?o Sabbas F T, Sentman D D, Wescott E M, et al. 2003. Statistical analysis of space-time relationships between sprites and lightning [J]. J. Atmos. Sol.-Terr. Phys., 65 (5): 525-535, doi:10.1016/S1364-6826(2)00326-7.
[20]
Sentman D D, Wescott E M, Osborne D L, et al. 1995. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites [J]. Geophys. Res. Lett., 22 (10): 1205-1208, doi:10.1029/95GL00583.
[21]
Soula S, van der Velde O, Montanyà J, et al. 2009. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies [J]. Atmos. Res., 91 (2-4): 514-528, doi:10.1016/j.atmosres.2008.06.017.
[22]
Stanley M, Krehbiel P, Brook M, et al. 1999. High speed video of initial sprite development [J]. Geophys. Res. Lett., 26 (20): 3201-3204, doi:10.1029/1999GL010673.
[23]
Stenbaek-Nielsen H C, Moudry D R, Wescott E M, et al. 2000. Sprites and possible mesospheric effects [J]. Geophys. Res. Lett., 27 (23): 3829- 3832.
[24]
Takahashi Y, Miyasato R, Adachi T, et al. 2003. Activities of sprites and elves in the winter season, Japan [J]. J. Atmos. Sol.-Terr. Phys., 65 (5): 551-560, doi:10.1016/S1364-6826(2)00330-9.
[25]
王宇, 郄秀书, 王东方, 等. 2015. 北京闪电综合探测网(BLNET)Ⅰ: 网络构成与初步定位结果 [J]. 大气科学, 39 (3): 571-582, doi:10.3878/j.issn.1006-9895.1407.14138. Wang Yu, Qie Xiushu, Wang Dongfang, et al. 2015. Beijing Lightning Network (BLNET). Part 1: Configuration and preliminary results of lightning location [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39 (3): 571-582,
[26]
Wescott E M, Sentman D D, Heavner M J, et al. 1998. Observations of “Columniform” sprites [J]. J. Atmos. Sol.-Terr. Phys., 60 (7-9): 733-740, doi:10.1016/S1364-6826(98)00029-7.
[27]
Winckler J R. 1995. Further observations of cloud-ionosphere electrical discharges above thunderstorms [J]. J. Geophys. Res.: Atmos., 100 (D7): 14335-14345, doi:10.1029/95JD00082.
[28]
杨静, 郄秀书, 张广庶, 等. 2008. 发生于山东沿海雷暴云上方的红色精灵 [J]. 科学通报, 53 (4): 482-488. Yang Jing, Qie Xiushu, Zhang Guangshu, et al. 2008. Red sprites over thunderstorms in the coast of Shandong Province, China [J]. Chin. Sci. Bull. (in Chinese), 53 (4): 482-488. Yang J, Qie X S, Feng G L. 2013. Characteristics of one sprite-producing summer thunderstorm [J]. Atmos. Res., 127: 90-115, doi:10.1016/j. atmosres.2011.08.001.