全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2003 

用连续子波变换提取城市冠层大气湍流的相干结构

DOI: 10.3878/j.issn.1006-9895.2003.02.05

Keywords: 大气湍流,相干结构,子波分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

切变湍流的相干结构是湍流研究中的重大发现,它表明湍流在表面上看来不规则运动中具有可检测的有序运动,这种相干结构在切变湍流的脉动生成和发展中起着主宰作用.因此识别和提取相干结构对于认识和研究湍流是非常重要的.用数字滤波法将包含相干结构的大尺度信号提取出来以后,再用子波分析,根据子波能量极大值的判别方法,分别确定出大气湍流三个方向上的速度脉动信号相干结构的频率或时间尺度,然后由确定尺度上的连续子波反演公式,提取出大气湍流三个方向上的速度脉动信号相干结构所对应的波形.

References

[1]  欣茨 J. O., 湍流(上册),黄永念、颜大椿译,北京:科学出版社,1987,393pp.
[2]  是勋刚,湍流,第一版,天津:天津大学出版社,1994,255pp.
[3]  姜楠,子波分析辨识壁湍流猝发事件的能量最大准则,力学学报,1997,20(4),406~411.
[4]  汪健生、尚晓东、舒玮,湍流信号的三项分解,力学学报,1997,29(5),519~524.
[5]  汪健生、张金钟、舒玮,提取壁湍流相干结构的数字滤波法,力学学报,1995,27(4), 398~405.
[6]  胡非,湍流、间歇性和大气边界层,北京:科学出版社,1995, 288pp.
[7]  Liandrant, J., and F. Moret-Bailly, The wavelet transform: Some applications to fluid dynamics and turbulence, Eur. J. Mech. B/Fluid, 1990, 9(1), 1~19.
[8]  Farge, M., Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid. Mech., 1992, 24, 395~457.
[9]  Argoul, F., A. Arneodo, A. Grasseau, Y. Gagne, E. J. Hopfinger, and U. Frisch, Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade, Nature, 1989, 338(2), 51~53.
[10]  Yamada, M., and K. Ohkitani, Orthonormal wavelet expansions and its application to turbulence, Prog. Theor. Phys., 1990, 83(9), 819~823.
[11]  Mahrt, L., Eddy asymmetry in the sheared heated boundary layer, J. Atmos. Sci., 1991, 48, 472~492.
[12]  Gamage, N., and C. Hagelberg, Detection and analysis of Micorfronts and associated coherent events using localized transforms, J. Atmos. Sci., 1993, 50(5), 750~756.
[13]  Gao, W., and B. L. Li, Wavelet analysis of coherent structures at the atmosphere-forest interface, J. Appl. Meteor., 1993, 32, 1717~1725.
[14]  Coulter, R. L., and B. L. Li, A technique using the wavelet transform to identify and isolate coherent structures in the planetary boundary layer, 11th Symposium on Boundary Layer and Turbulence, March 27-31, Charlotte, NC; AMS, 1995, 291~294.
[15]  Qian Minwei, and Liu Shida, Scale exponents of atmospheric turbulence under different stratifications, Fractals, 1996, 4, 45~48.
[16]  Szilagyi, J., G. G. Katul, M. B. Parlange, J. D. Albertson, and A. T. Cahill, The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer, Bound.-Layer Meteor., 1996, 79(1-2), 35~50.
[17]  胡非,大气边界层湍流涡旋结构的小波分解,气候与环境研究,1998,3(2),97~105.
[18]  Lau, K.-M., and Hengyi Weng, Climate signal detection using wavelet transform: How to make a time series sing, Bull. Amer. Meteor. Soc., 1995, 76(12), 2391~2402.
[19]  Weng Hengyi, and K.-M. Lau, Wavelets, period-doubling and time-frequency localization with application to organization of convection over the tropical western Pacific, J. Atmos. Sci., 1994, 51(17), 2523~2541.
[20]  刘式达、陈炯,近百年中国、北半球和南半球气温内在结构比较(I),应用气象学报,1999,10(增刊),9~15.
[21]  陈炯、刘式达,近百年中国、北半球和南半球气温内在结构比较(II),应用气象学报,1999,10(增刊),142~147.
[22]  胡增臻、石伟,子波变换在大气科学中的应用研究,大气科学,1997,21(1),58~72.
[23]  Staszewski, W. J., K. Worden, and J. M. Rees, Analysis of wind fluctuations using the orthogonal wavelet transform, Applied Scientific Research, 1998, 59, 205-218.
[24]  胡非、李昕、陈红岩等,城市冠层中湍流运动的统计特征,气候与环境研究,1999,4(3),252-258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133