全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2006 

全球环境大气输送模式(GEATM)的建立及其验证

DOI: 10.3878/j.issn.1006-9895.2006.03.13

Keywords: 全球化学输送模式,大气化学,气溶胶,起沙机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

初步建立了以二氧化硫、硫酸盐、黑碳、沙尘气溶胶等作为主要研究对象的全球环境大气输送模式(GlobalEnvironmentalAtmosphericTransportModel,GEATM),其水平分辨率为1°×1°,垂直方向分为20层,采用地形追随坐标系,考虑了上述大气化学成分的地面源排放、平流与扩散、化学转化以及干沉降、湿清除等过程.利用NCEP/NCAR再分析资料作为驱动气象场,对2004年进行长期模拟,分析了二氧化硫、硫酸盐、黑碳、沙尘气溶胶的浓度分布和输送态势.与观测的比较表明,模式对于大气化学成分分布状况具有较强的模拟能力,在欧洲的Jarczew和Leba观测站,二氧化硫日平均浓度的相关系数分别达到了0.69和0.66;在中国,有47个站点的二氧化硫日平均浓度相关系数高于0.50,其中北京、天津、上海等28个站点的浓度相关系数达到了0.60以上.同时,模拟的沙尘气溶胶总体柱浓度分布状况与卫星观测输出的气溶胶光学厚度具有很好的一致性,体现了气溶胶粒子的输送态势和分布特征.模拟结果显示二氧化硫、硫酸盐、黑碳的浓度高值区主要位于污染排放较大的欧洲、东亚和北美地区,二氧化硫地面最大年均浓度值为1500×10-12,硫酸盐为500×10-12,黑碳气溶胶为1000ng/m3.沙尘浓度与下垫面土壤类型以及地面气象条件关系密切,全球沙尘浓度主要分布在撒哈拉沙漠、阿拉伯半岛、中亚地区、澳大利亚西部以及拉丁美洲南部地区,并且呈现了较为显著的季节变化特征,撒哈拉沙漠输送最强时期是在6~8月,影响范围覆盖了整个赤道大西洋,最西端伸展到了北美的加勒比海地区;阿拉伯半岛沙尘输送最强时期是3~8月,影响范围包括阿拉伯海和孟加拉湾地区;亚洲在3~5月有非常强烈的沙尘东传过程,浓度输送带一直贯穿了整个北太平洋地区.

References

[1]  Houghton J T,Ding Y,Griggs D J,et al.Climate Change 2001:The Scientific Basis is the most comprehensive and upto-date scientific assessment of past,present and future climate change.IPCC,2001
[2]  Huebert B J,Bates T,Russell P B,et al.An overview of ACE-Asia:Strategies for quantifying the relationships between Asian aerosols and their climatic impacts.J.Geophys.Res.,2003,108:8633~8652
[3]  Jacob D J,Crawford H J,Kleb M M,et al.Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission:Design,execution,and first results.J.Geophys.Res.,2003,108:9000~9018
[4]  Brasseur G P,Hauglustaine D A,Walters S,et al.MOZART,a global chemical transport model for ozone and related chemical tracers,1.Model description.J.Geophys.Res.,1998,103:28265~28289
[5]  Wang Y,Jacob D J,Logan J A.Global simulation of tropospheric O3-NOx-hydrocarbon chemistry,1.Model formulation.J.Geophys.Res.,1998,103:10713~10725
[6]  Zender C S,Bian H,Newman D.Mineral dust entrainment and deposition (DEAD) model:Description and 1990s dust climatology.J.Geophys.Res.,2003,108:4416~4435
[7]  Liu Y,Li W L,Zhou X J,et al.Mechanism of formation of the ozone valley over the Tibetan Plateau in summer:Trans port and chemical process of ozone.Adv.Atmos.Sci.,2003,20:103~109
[8]  Liu Y,Li W L,Zhou X J,et al.The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH.Adv.Atmos.Sci.,2003,20:968~977
[9]  Liu Y,Isaksen I S A,Sundet J K,et al.NOx change over China and its influences.Adv.Atmos.Sci.,2004,21:132~140
[10]  马晓燕,石广玉,郭裕福,等.硫酸盐气溶胶辐射强迫的数值模拟研究.气候与环境研究,2004,9:454~464 Ma X Y,Shi G Y,Guo Y F,et al.Simulation of radiative forcing by sulfate aerosols.Climatic and Environmental Research (in Chinese),2004,9:454~464
[11]  王宏,石广玉,Aoki T,等.2001年春季东亚-北太平洋地区沙尘气溶胶的辐射强迫.科学通报,2004,49:1993~2000 Wang H,Shi G Y,Aoki T,et al.Radiative forcing of dust aerosol over East Asia and North Pacific during the spring of 2001.Chinese Science Bulletin (in Chinese),2004,49:1993~2000
[12]  Wang Z F,Ueda H,Huang M Y.A deflation module for use in modeling long-range transport of yellow sand over East Asia.J.Geophys.Res.,2000,105:26947~26959
[13]  Tarrason L.Dispersion of sulfur in the north hemisphere.A study with a 3-dimensional time-resolved model.Ph.D.dissertation,University of Oslo,Norway,1995
[14]  Gillette D.A wind tunnel simulation of the erosion of soil:Effect of soil texture,sandblasting,wind speed,and soil consolidation on dust production.Atmospheric Environment,1978,12:1735~1743
[15]  White B R.Soil transport by winds on Mars.J.Geophys.Res.,1979,84:4643~ 4651
[16]  Lunt D J,Valdes P J.The modern dust cycle:Comparison of model results with observations and study of sensitivities.J.Geophys.Res.,2002,107:4669~4684
[17]  Shao Y,Raupach M R,Leys J F.A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region.Aust.J.SoilRes.,1996,34:309~342
[18]  Matthews E.Prescription of Land-surface Boundary Conditions in GISS GCM Ⅱ:A Simple Method Based on High-Resolution Vegetation Data Sets.NASA TM-86096.National Aeronautics and Space Administration.Washington,D.C.1984
[19]  Zobler L.A world soil file for global climate modeling.NASA TM-87802.National Aeronautics and Space Administration.Washington,D.C.1986
[20]  Sudo K,Takahashi M,Kurokawa J,et al.CHASER:A global chemical model of the troposphere,1.Model description.J.Geophys.Res.,2002,107:4339~4358
[21]  Rotman D A,Atherton C S,Bergmann D J,et al.IMPACT,the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere:Model description and analysis of ozone and other trace gases.J.Geophys.Res.,2004,109:D04303~D04344
[22]  Roelofs G-J,Lelieveld J,Ganzeveld L.Simulation of global sulfate distribution and the influence of effective cloud drop radii with a coupled photochemistry-sulfur cycle model.Tellus,1998,50B:224~242
[23]  Chin M,Rood R B,Lin S-J,et al.Atmospheric sulfur cycle simulated in the global model GOCART:Model description and global properties.J.Geophys.Res.,2000,105:24671~24687
[24]  Tegen I,Fung I.Modeling of mineral dust in the atmosphere:Sources,transport,and optical thickness.J.Geophys.Res.,1994,99:22897~22914
[25]  Wesely M L.Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models.Atmos.Environ.,1989,23:1293~1304
[26]  Oliver J G,Boudowman A F,Maas C.et al.Description of EDGAR Version 2.0:A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1°× 1°.RIVM/TNO Rep,771060 002,1996
[27]  Benkovitz C M,Scholtz M T,Pacyna,J.et al.Global gridded inventories of anthropogenic emissions of sulfur and nitrogen.J.Geophys.Res.,1996,101:29239~29254
[28]  Streets D G,Bond T C,Carmichael G R,et al.An inventory of gaseous and primary aerosol emissions in Asia in the year 2000.J.Geophys.Res.,2003,108:8809~8831
[29]  Sandnes H,Styve H.Calculated budgetes for airborne acidifying components in Europe,1985,1987,1988,1989,1990and 1991.EMEP/MSC-W Rep.1/92,Norw.Meteorol.Inst.,Oslo,Norway,1992
[30]  Rotstayn L D,Lohmann U.Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme.J.Geophys.Res.,2002,107:4592~4612
[31]  Wiscombe W J,Warren S G.A model for the spectral albedo of snow.Ⅰ:Pure snow.J.Atmos.Sci.,1980,37:2712~2733
[32]  Bonan G B.A land surface model (LSM version 1.0) for ecological,hydrological,and atmospheric studies:Technical description and user\'s guide.Tech.Rep.NCAR TN 417 +STR,Natl.Cent.For Atmos.Res.,Boulder,Colo.,1996
[33]  Easter R C,Ghan S J,Zhang Y,et al.MIRAGE:Modeldescription and evaluation of aerosols and trace gases.J.Geophys.Res.,2004,109:D20210~D20255
[34]  Berglen T F,Berntsen T K,Isaksen I S A,et al.A global model of the coupled sulfur/oxidant chemistry in the troposphere:The sulfur cycle.J.Geophys.Res.,2004,109:D19310~19336
[35]  Barth M C,Rasch P J,Kiehl J T,et al.Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model:Description,evaluation,features,and sensitivity to aqueous chemistry.J.Geophys.Res.,2000,105:1387~1415
[36]  Tie X,Madronich S,Walters S,et al.Assessment of the global impact of aerosols on tropospheric oxidants.J.Geophys.Res.,2005,110:D03204~D03235

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133