全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2007 

复杂地形下地面观测资料同化I.模式地形与观测站地形高度差异对地面资料同化的影响研究

DOI: 10.3878/j.issn.1006-9895.2007.02.04

Keywords: 地面观测资料,同化分析,近地层相似理论,模式地形与观测站地形高度差异

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国地形复杂,模式地形与实际观测地形存在一定高度差异,因此设计合理的复杂地形下地面观测资料的同化方案有利于使我国目前仅用作探测手段的地面观测资料(常规地面观测站和地面自动站)在中尺度数值模式中得到充分利用。作者在MM5_3DVAR同化系统中利用近地层相似理论将地面观测资料进行直接三维变分同化分析,并对地面资料同化方案设计中是否需要考虑模式与实际观测站地形高度差异进行探讨研究。研究结果表明:通过近地层相似理论将地面观测资料同化到数值模式能起到一定的作用,并且地面观测资料(温度、湿度、风场、地面气压)中各物理量同化到数值模式都能影响24小时降水数值结果,但各物理量起的作用大小不一样,其中影响最大的是温度,其次为湿度;地面观测资料同化方案设计有必要考虑模式地形与实际观测站地形高度差异,适当考虑这种高度差异能取得较好的结果。

References

[1]  Turpeinen O M, Garand L, Benoit R, et al. Diabatic initialization of Canadian Regional Finite Element (RFE) model using .satellite data. Mon. Wea. Rev., 1990, 118:1391-1407
[2]  Zhang D L, Fritcsh J M. A case study of the sensitivity of numerical model simulation of me,scale convective systems to varying initial condition. Mort. Wea. Rev., 1986, 114:2481-2431
[3]  余兴 王晓玲.复杂地形边界层结构的数值模拟[J].高原气象,:.
[4]  Miller P A, Benjamin S G. A system for the hourly assimilation of surface observations in mountainous and flat terrain.Mort. Wea. Rev, 1992, 120 (10): 2342-2359
[5]  Ruggiero F H, Sashegyi K D, Madala R V, et al. The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Wea. Rev. , 1996, 124 (5):1018-1033
[6]  Giard D, Bazile E. Implementation of a new assimilation scheme for soil and surface variable in a global NWP model.Mon. Wea. Rev. , 2000, 128 (4):997-1015
[7]  张昕.[D].中国科学研究院大气物理研究所,2002.149pp.
[8]  Guo Y-R, Shin D-H, Lee J-H, et al. Application of the MM5 3DVAR system for a heavy rain case over the Korean Peninsula. Papers Presented at the Twelfth PSU/NCAR Mesoscale Model Users\\' Workshop NCAR, June 24 - 25, 2002.
[9]  丁伟钰 万齐林 闫敬华 蒙伟光 陈子通.对流天气系统自动站雨量资料同化对降雨预报的影响[J].大气科学,2006,30(2):317-326.
[10]  Barker D M, Huang W, Guo Y-R, et al. A Three-Dimensional Variational (3DVAR) Data Assimilation System for Use With MM5. NCAR Tech Note, NCAR/TN-453+STR,2003, 68
[11]  Courtier P, Th6paut J-N, Hollingsworth A. A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy, Meteor. Soc., 1994, 120:1367-1387
[12]  Parrish D F, Derber J C. The national meteorological center\\'s spectral statistical-interpolation analysis system.Mon. Wea. Rev. , 1992, 120:1747-1763
[13]  Grell G A, Dudhia J, Stauffer D R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model(MMS). NCAR Tech.Note, NCAR/TN-398+STR, 1994,138
[14]  Zupanski M. A preconditioning algorithm for large-scale minimization problems. Tellus. 1993, 45A:478-492
[15]  Zupanski M, Mesinger F. Four-dimensional variational assimilation of precipitation data. Mort. Wea. Rev., 1995,123:1112-1127
[16]  Zou X, Kuo Y-H, Guo Y-R. Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon.Wea. Rev. , 1995, 121:272-289
[17]  Zupanski M. A preconditioning algorithm for four-dimensional variational data assimilation. Mon. Wea. Rev., 1996,124:2562-2573
[18]  Tsuyuki T. Variational data assimilation in tropic using precipitation data. Part Ⅲ: Assimilation of SSM/Ⅰ precipitation rates. Mon. Wea. Rev., 1997, 125:1447-1463

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133