全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2012 

迭代EnSRF方案设计及在Lorenz96模式下的检验

DOI: 10.3878/j.issn.1006-9895.2012.11185

Keywords: 迭代EnSRF,Lorenz96,背景误差协方差,模式误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用非同步(Asynchronous)算法设计了一个包含迭代过程的集合平方根滤波方案(迭代EnSRF),并在Lorenz96模式下详细对比分析了该方案和传统EnSRF方案的同化效果.与传统EnSRF方案不同,迭代EnSRF方案能够同时更新两个时次的背景场并通过迭代过程来改进分析结果.本文不仅检验了迭代EnSRF在同化不同类型观测资料时的效果,还检验了存在模式误差时该方案的同化效果,并且对同化结果的合理性进行了详细分析.试验结果表明:在完美模式下,迭代EnSRF能够显著加快同化常规观测时的收敛速度,并能够更加有效地同化非常规观测资料;在存在模式误差时,迭代EnSRF并不能有效改进分析结果;当对不准确的模式参数进行扰动后,迭代EnSRF能够更好地利用改进后的集合预报系统来提高其对部分类型观测的分析结果.进一步的分析表明,分析结果的改进主要得益于迭代EnSRF改进了背景误差协方差空间结构,并使得EnSRF的线性假设得到更好的满足.

References

[1]  Anderson J L, Anderson S L. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts [J]. Mon. Wea. Rev., 127 (12): 2741-2758.
[2]  Anderson J L. 2007a. An adaptive covariance inflation error correction algorithm for ensemble filters [J]. Tellus A, 59 (2): 210-224.
[3]  Anderson J L. 2007b. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 99-111.
[4]  Caya C, Sun J, Snyder C. 2005. A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation [J]. Mon. Wea. Rev., 133 (11): 3081-3094.
[5]  Danforth C M, Kalnay E, Miyoshi T. 2007. Estimating and correcting global weather model error [J]. Mon. Wea. Rev., 135 (2): 281-299.
[6]  Dee D P, Da Silva A M. 1998. Data assimilation in the presence of forecast bias [J]. Quart. J. Roy. Meteor. Soc., 124 (545): 269-295.
[7]  Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. J. Geophys. Res., 99 (C5): 10143-10162.
[8]  Evensen G. 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation [J]. Ocean Dynamics, 53 (4): 343-367.
[9]  Gao J D, Xue M, Shapiro A, et al. 1999. A variational method for the analysis of three-dimensional wind fields from two Doppler radars [J]. Mon. Wea. Rev., 127 (9): 2128-2142.
[10]  Gaspari G, Cohn S E. 1999. Construction of correlation functions in two and three dimensions [J]. Quart. J. Roy. Meteorol. Soc., 125 (554): 723-757.
[11]  Houtekamer P L, Mitchell H L. 1998. Data assimilation using an ensemble Kalman filter technique [J]. Mon. Wea. Rev., 126 (3): 796-811.
[12]  Houtekamer P L, Mitchell H L. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation [J]. Mon. Wea. Rev., 129 (1): 123-137.
[13]  Hunt B R, Kalney E, Kostelich J E, et al. 2004. Four-dimensional ensemble Kalman filtering [J]. Tellus A, 56 (4): 273-277.
[14]  Hunt B R, Kostelich E J, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J]. Physica D: Nonlinear Phenomena, 230 (1-2): 112-126.
[15]  Kalnay E, Yang S C. 2010. Accelerating the spin-up of ensemble Kalman filtering [J]. Quart. J. Roy. Meteor. Soc., 136 (651): 1644-1651.
[16]  Li H, Kalnay E, Miyoshi T. 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter [J]. Quart. J. Roy. Meteor. Soc., 135 (639): 523-533.
[17]  Lorenz E N, Emanuel K A. 1998. Optimal sites for supplementary weather observations: Simulation with a small model [J]. J. Atmos. Sci., 55 (3): 399-414.
[18]  Maybeck P S. 1979. Square root filtering [M]//Stochastic Models, Estimation and Control, Vol. 1. New York: Academic Press, 411.
[19]  Meng Z Y, Zhang F Q. 2007. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments [J]. Mon. Wea. Rev., 135 (4): 1403-1423.
[20]  Murphy J M. 1988. The impact of ensemble forecasts on predictability [J]. Quart. J. Roy. Meteor. Soc., 114 (480): 463-493.
[21]  Sakov P, Evensen G., Bertino L. 2010. Asynchronous data assimilation with the EnKF [J]. Tellus A, 62 (1): 24-29.
[22]  Sun J Z, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54 (12): 1642-1661.
[23]  Whitaker J S, Hamill T M. 2002. Ensemble data assimilation without perturbed observations [J]. Mon. Wea. Rev., 130 (7): 1913-1924.
[24]  许小永, 郑国光, 刘黎平. 2004. 多普勒雷达资料4DVAR同化反演的模拟研究 [J]. 气象学报, 62 (4): 410-422. Xu Xiaoyong, Zheng Guoguang, Liu Liping. 2004. Dynamical and microphysical retrieval from simulated Doppler radar observations using the 4DVAR assimilation technique [J]. Acta Meteorologica Sinica (in Chinese), 62 (4): 410-422.
[25]  Xue M, Tong M J, Droegemeier K K. 2006. An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting [J]. J. Atmos. Oceanic Technol., 23 (1): 46-66.
[26]  Yang S C, Corazza M, Carrassi A, et al. 2009. Comparison of local ensemble transform Kalman filter, 3DVAR, and 4DVAR in a quasigeostrophic odel [J]. Mon. Wea. Rev., 137 (2): 693-709.
[27]  Zhang F, Snyder C, Sun J Z. 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter [J]. Mon. Wea. Rev., 132 (5): 1238-1253.
[28]  Zheng F, Zhu J, Zhang R H, et al. 2006. Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model [J]. Geophys. Res. Lett., 33: L19604, doi: 10.1029/2006GL026994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133