全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

PRM标量平流方案在GRAPES全球预报系统中的应用

DOI: 10.3878/j.issn.1006-9895.2013.12164

Keywords: PRM方案,标量平流,GRAPES全球预报系统,半拉格朗日,质量守恒

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何更好地模拟水物质的分布,对于数值天气预报效果的改进,特别是对于更好地模拟降水过程,具有重要的意义。半拉格朗日模式中的标量平流计算要求做到高精度、守恒、正定和保形,但GRAPES_GFS(Global-RegionalAssimilationandPrEdictionSystem,GlobalForecastSystem)中采用的QMSL(Quasi-MonotoneSemi-Lagrangian)平流方案在水汽的强梯度、不连续区域计算精度较低,且不能做到严格守恒。本研究借鉴计算流体力学领域的研究进展,将一个基于分段有理函数的物质平流方案PRM(PiecewiseRationalMethod)引入GRAPES_GFS中,按照通量形式求解水汽方程,并对极区进行了混合等技术处理。通过一系列理想试验对两种平流方案进行了对比,证明了PRM方案精度较高,特别是在水汽梯度大的区域优势明显,频散、耗散误差较小,守恒、保形性也要好于QMSL方案。通过对GRAPES_GFS中批量预报试验效果的检验,验证了PRM方案可以有效地改进模式对水物质分布的模拟,提高了降水的预报效果,对模式综合预报性能的提升也有明显作用。

References

[1]  Tanaka R, Nakamura T, Yabe T. 2000. Constructing exactly conservative scheme in a non-conservative form[J]. Comput. Phys. Commun., 126: 232-243.
[2]  Thuburn J. 1996. TVD schemes, positive schemes, and the universal limiter[J]. Mon. Wea. Rev., 125: 1990-1997.
[3]  王明欢, 沈学顺, 肖峰. 2011. GRAPES模式中高精度正定保形物质平流方案的研究II: 连续实际预报试验[J]. 气象学报, 69: 16-25. Wang M H, Shen X S, Xiao F. 2011. A study of the high-order accuracy and positive-definite conformal advection scheme in the GRAPES model. Ⅱ: Continuous actual rainfall prediction experiments[J]. Acta Meteorologica Sinica (in Chinese), 69: 16-25.
[4]  Williamson D L, Rasch P. 1989. Two-dimensional semi-Lagrangian transport with shape preserving interpolation[J]. Mon. Wea. Rev., 117: 102-129.
[5]  Xiao F, Peng X D. 2004. A convexity preserving scheme for conservative advection transport[J]. J. Comput. Phys., 198: 389-402.
[6]  Xiao F, Yabe T. 2001. Completely conservative and oscillation-less semi-Lagrangian schemes for advection transportation[J]. J. Comput. Phys., 170: 498-522.
[7]  Xiao F, Yabe T, Peng X D, et al. 2002. Conservative and oscillation-less atmospheric transport schemes based on rational functions[J]. J. Geophys. Res., 107: 1-11.
[8]  薛纪善, 陈德辉. 2008. 数值预报系统GRAPES的科学设计与应用[M]. 北京: 科学出版社, 67-70. Xue J S, Chen D H. 2008. Scientific Design and Application on Numerical Prediction System GRAPES (in Chinese)[M]. Beijing: Science Press, 67-70.
[9]  Bermejo R, Staniforth A. 1992. The conversion of the semi-Lagrangian advection schemes to quasi-monotone schemes[J]. Mon. Wea. Rev., 120: 2622-2632.
[10]  Book D L, Boris J P, Hain K. 1975. Flux-corrected transport II: Generalizations of the method[J]. J. Comput. Phys., 18: 248-283.
[11]  陈德辉, 沈学顺. 2006. 新一代数值预报系统GRAPES研究进展[J]. 应用气象学报, 17: 773-777. Chen D H, Shen X S. 2006. Recent progress on GRAPES research and application[J]. Journal of Applied Meteorological Science (in Chinese), 17: 773-777.
[12]  陈嘉滨, 季仲贞. 2004. 半隐式半拉格朗日平方守恒格式的构造[J]. 大气科学, 28: 527-535. Chen J B, Ji Z Z. 2004. A study of complete square-conserving semi-implicit semi-Lagrangian scheme[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28: 527-535.
[13]  Clappier A. 1998. A correction method for use in multidimensional time-splitting advection algorithms: Application to two-and three-dimensional transport[J]. Mon. Wea. Rev., 126: 232-242.
[14]  Colella P. 1985. A direct Eulerian MUSCL scheme for gas dynamics[J]. Sci. Stat. Comput., 6: 104-117.
[15]  Colella P, Woodward P R. 1984. The piecewise parabolic method (PPM) for gas-dynamical simulations[J]. J. Comput. Phys., 54: 174-201.
[16]  Hundsdorfer W, Spee E J. 1995. An efficient horizontal advection scheme for the modeling of global transport of constituents[J]. Mon. Wea. Rev., 123: 3554-3564.
[17]  Jablonowsik C, Lauritzen P, Nair R, et al. 2008. Idealized test cases for the dynamical cores of atmospheric general circulation models: A proposal for the NCAR ASP 2008 summer colloquium. June, 2008, Boulder, Colorado, U.S.A., NCAR.
[18]  Li X L, Chen D H, Peng X D, et al. 2006. Implementation of the semi-Lagrangian advection scheme on a quasi-uniform overset grid on a sphere[J]. Adv. Atmos. Sci., 23: 792-801.
[19]  Machenhauer B, Kass E, Lauritzen P H. 2008. Finite-Volume Methods in Meteorology[C] // Teman R, Tribbia J, Ciarlet P. Computational Methods for the Atmosphere and the Oceans. New York: Elsevier, 1-120.
[20]  Peng X D, Xiao F, Wataru O, et al. 2005. Conservative semi-Lagrangian transport on a sphere and the impact on vapor advection in an atmospheric general circulation model[J]. Mon. Wea. Rev., 133: 504-520.
[21]  Ritchie H. 1995. Implementation of the semi-Lagrangian method in a high resolution version of the ECMWF forecast model[J]. Mon. Wea. Rev., 123: 489-514.
[22]  Robert A, Yee T L, Ritchie H. 1985. A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models[J]. Mon. Wea. Rev., 113: 388-394.
[23]  沈学顺, 王明欢, 肖峰. 2011. GRAPES模式中高精度正定保形物质平流方案的研究I: 理论方案设计与理想试验[J]. 气象学报, 69: 1-15. Shen X S, Wang M H, Xiao F. 2011. A study of the high-order accuracy and positive-definite conformal advection scheme in the GRAPES model. Ⅰ: Scientific design and idealized tests[J]. Acta Meteorologica Sinica (in Chinese), 69: 1-15.
[24]  苏勇, 沈学顺. 2009. 相变修正方案在GRAPES模式标量平流中的应用[J]. 气象学报, 67: 1089-1100. Su Y, Shen X S. 2009. Application of amendment to phase-change scheme in scalar advection of GRAPES model[J]. Acta Meteorologica Sinica (in Chinese), 67: 1089-1100.
[25]  Smolarkiewicz P K. 1982. The multi-dimensional Crowley advection scheme[J]. Mon. Wea. Rev., 110: 1968-1983.
[26]  Staniforth A, C?té J. 1991. Semi-Lagrangian integration schemes for atmospheric models—A review[J]. Mon. Wea. Rev., 119: 2206-2223.
[27]  Staniforth A, Cote J, Pudykiewicz J. 1987. Comments on "Smolarkiewicz_s deformational flow"[J]. Mon. Wea. Rev., 115: 894-900.
[28]  Yu R C. 1994. A two-step shape-preserving advection scheme[J]. Adv. Atmos. Sci., 11: 479-490.
[29]  庄世宇, 薛纪善, 朱国富, 等. 2005. GRAPES全球三维变分同化系统——基本设计方案与理想试验[J]. 大气科学, 29: 872-884. Zhuang S Y, Xue J S, Zhu G F, et al. 2005. GRAPES global 3D-Var system—Basic scheme design and single observation test[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29: 872-884.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133