全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

台风麦莎登陆后粘性摩擦对正压特征波动的影响

DOI: 10.3878/j.issn.1006-9895.2013.12047

Keywords: 台风麦莎,粘性摩擦,正压波动,特征值问题,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文推导出柱坐标系下含有粘性摩擦项的正压方程组。选取2005年台风麦莎登陆浙江过程中的8月6日15时的WRF(WeatherResearchandForecasting)模式输出资料,利用数值差分方法对该正压方程组求特征波解,分析粘性摩擦对台风麦莎内部正压特征波动的影响。结果表明,重力惯性外波在粘性摩擦的影响下,最不稳定波的波数为45左右,波动在摩擦的影响下衰减,波动沿逆时针传播,在半径1000km处,1波波速为47.43m/s,在半径r>800km的范围内,径向风分量扰动加大,辐合辐散运动增强;而摩擦影响下的涡旋Rossby波,2波最不稳定,波动增长率减小,在半径r=200km处波动相速度为4.282~29.172m/s,扰动涡度大值区范围减小,涡旋Rossby波的波动区域沿着径向向台风中心收缩。分析包含所有波动时,考虑摩擦后,最不稳定波数在45左右且波动衰减,1波波速在r=1000km处(外螺旋雨带)为26.374m/s;在半径r=200km(内螺旋雨带)为5.275m/s,考虑径向基本气流后,最不稳定波的波数保持不变,半径r=1000km处的波速增加为30.324m/s,r=200km(内螺旋雨带)处波速为6.065m/s,摩擦使得径向风分量扰动明显增大,辐合辐散运动加强。

References

[1]  Barat J. 1983. The fine structure of the stratospheric flow revealed by differential sounding[J]. J. Geophys. Res., 88: 5219-5228.
[2]  Chan K R, Scott S G, Bowen S W, et al. 1991. Horizontal wind fluctuations in the stratosphere during large-scale cyclogenesis[J]. J. Geophys. Res., 96: 17425-17432.
[3]  Chen D, Chen Z Y, Lü D R. 2011. Simulation of the stratospheric gravity waves generated by the typhoon Matsa in 2005[J]. Science China (Earth Sciences), 55: 602-610.
[4]  丁一汇, 沈新勇. 1998. 非保守系统中的对称不稳定 I: 弱粘性的强迫作用[J]. 大气科学, 22: 145-155. Ding Y H, Shen X Y. 1998. Symmetric instability in nonconservative systems. Part I: Forcing effect of weak viscosity[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22: 145-155.
[5]  Chen Y S, Yau M K. 2000. Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification[J]. J. Atmos. Sci., 58: 2128-2145.
[6]  Eckermann S D, Voncent R A. 1993. VHF radar observations of gravity-wave production by cold fronts over southern Australia[J]. J. Atmos. Sci., 50: 785-806.
[7]  黄泓, 张铭. 2003. 正压涡旋中螺旋波失稳问题的研究[J]. 热点气象学报, 19: 197-202. Huang H, Zang M. 2003. Study on destabilization of spiral wave in barotropic vortex[J]. Journal of Tropical Meteorology (in Chinese), 19: 197-202.
[8]  黄泓, 张铭. 2008. 热带气旋螺旋云带动力不稳定的性质[J]. 气象学报, 66: 81-89. Huang H, Zhang M. 2008. Unstable dynamical properties of spiral bands in tropical cyclones[J]. Acta Meteor. Sinica (in Chinese), 66: 81-89.
[9]  李崇银, 李桂龙. 1996. El Ni?o影响热带大气季节内振荡的动力学研究[J]. 大气科学, 20: 159-168. Li C Y, Li G L. 1996. A dynamical study of influence of El Ni?o on intraseasonal oscillation in tropical atmosphere[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 20: 159-168.
[10]  Li Y, Wang J Z, Chen L S, et al. 2007. Study on wavy distribution of rainfall associated with typhoon Matsa (2005)[J]. Chinese Science Bulletin, 52: 972-983.
[11]  Macdonald N J. 1968. The evidence for the existence of Rossby-like waves in the hurricane vortex[J]. Tellus, 20: 138-150.
[12]  Mark D P. 1989. Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure[J]. Mon. Wea. Rev., 118: 891-917.
[13]  Michael T, Montgomery M T, Janice E. 1998. Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model[J]. J. Atmos. Sci., 55: 3176-3207.
[14]  Montgomery M T, Kallenbach R J. 1997. A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes[J]. Quart. J. Roy. Meteor. Soc., 123: 435-465.
[15]  Montgomery M T, Lu C. 1997. Free waves on barotropic vortices. Part I: Eigenmode structure[J]. J. Atmos. Sci., 54: 1868-1885.
[16]  M?ller J D, Montgomery M T. 1999. Vortex Rossby waves and hurricane intensification in a barotropic model[J]. J. Atmos. Sci., 56: 1674-1687.
[17]  M?ller J D, Montgomery M T. 2000. Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model[J]. J. Atmos. Sci., 57: 3366-3387.
[18]  Pierce R B, Fairlie T D A. 1993. Chaotic advection in the stratosphere: Implications for the dispersal of chemically perturbed air from the polar vortex[J]. J. Geophys. Res., 98: 18589-18595.
[19]  沈新勇, 丁一汇. 1998. 对称扰动与纬向基流的相互作用II: 粘性波包的发展与弥散[J]. 大气科学, 22: 839-848. Shen X Y, Ding Y H. 1998. Interactions between symmetric disturbance and zonally basic flow. Part II: The development and dispersion of the viscosity wave packet[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22: 839-848.
[20]  沈新勇, 倪允琪, 张铭, 等. 2005a.β中尺度暴雨系统发生发展的一种可能物理机制I. 涡旋Rossby波的相速度[J]. 大气科学, 29: 727-733. Shen X Y, Ni Y Q, Zhang M, et al. 2005a. A possible mechanism of the genesis and development of meso-β rainstorm system. Part I. Phase velocity of vortex Rossby waves[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29: 727-733.
[21]  沈新勇, 倪允琪, 沈桐立, 等. 2005b.β中尺度暴雨系统发生发展的一种可能物理机制II. 涡旋Rossby波的形成[J]. 大气科学, 29: 854-863. Shen X Y, Ni Y Q, Shen T L, et al. 2005b. A possible mechanism of the genesis and development of meso-β rainstorm System. Part II. Formation of vortex Rossby waves[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29: 854-863.
[22]  沈新勇, 明杰, 方柯. 2007. 台风涡旋系统的波动性质及其数值模拟[J]. 气象科学, 27: 176-186. Shen X Y, Ming J, Fang K. 2007. The properties of wave in typhoon and its numerical simulation[J]. Scientia Meteorologica Sinica (in Chinese), 27: 176-186.
[23]  Stato K. 1989. An inertial gravity wave associated with a synoptic-scale pressure trough observed by MU radar[J]. J. Meteor. Soc. Japan, 67: 325-334.
[24]  Stato K. 1993. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly[J]. J. Atmos. Sci., 50: 518-537.
[25]  Sato K. 1994. A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with MU radar[J]. J. Atmos. Terr. Phys., 56: 755-774.
[26]  Tanaka H, Yamanaka M D. 1984. Multiple ‘gust layers\' observed in the middle stratosphere[C] // Holton J R, Matsuno T. Dynamics of the Middle Atmosphere: Proceedings of a Seminar held 8-12 November, 1982 in Honolulu, Hawaii. Tokyo, Japan: Terra Scientific Publishing Company, 117-140.
[27]  Tang X D, Tan Z M. 2006. Boundary-layer wind structure in a landfalling tropical cyclone[J]. Adv. Atmos. Sci., 23: 737-749.
[28]  Thomas L, Prichard I T, Astin I. 1992. Radar observations of an inertia-gravity wave in the troposphere and lower stratosphere[J]. Ann. Geophys., 10: 690-697.
[29]  Wang Y Q, Jeff D K, Greg J H. 2001. The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity[J]. Mon. Wea. Rev., 129: 2481-2500.
[30]  Willoughby H E. 1978a. A possible mechanism for the formation of hurricane rainbands[J]. J. Atmos. Sci., 35: 838-848.
[31]  Willoughby H E. 1978b. The vertical structure of hurricane rainbands and their interaction with the mean vortex[J]. J. Atmos. Sci., 35: 849-858.
[32]  Wu C C, Cheng H J, Wang Y Q, et al. 2009. A numerical investigation of the eyewall evolution in a landfalling typhoon[J]. Mon. Wea. Rev., 137: 21-40.
[33]  Xu Q. 1982. Unstable spiral inertia-gravity waves in typhoon[J]. Chinese Science (B), (7): 665-673.
[34]  余志豪. 2002. 台风螺旋雨带—涡旋Rossby波[J]. 气象学报, 60: 502-507. Yu Z H. 2002. The spiral rain bands of cyclone and vortex Rossby waves[J]. Acta Meteor. Sinica (in Chinese), 60: 502-507.
[35]  张立凤, 张铭. 1999. 斜压切变基流中横波型扰动的特征波动 I: 谱点分析[J]. 气象学报, 57: 571-580. Zhang L F, Zhang M. 1999. Characteristic wave of transversal disturbance at baroclinic shear flow. I: Spectrum analysis[J]. Acta Meteor. Sinica (in Chinese), 57: 571-580.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133