全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2013 

BCC_CSM模式对热带降水年循环模态的模拟

DOI: 10.3878/j.issn.1006-9895.2012.12126

Keywords: 降水年循环模态,气候系统模式,季风,分辨率

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文评估了国家气候中心发展的两个不同分辨率海—陆—气—冰多圈层耦合气候系统模式BCC_CSM1.1和BCC_CSM1.1(m)对热带降水两个年循环模态——揭示降水冬夏季节差异的季风模态和揭示过渡季节春季和秋季非对称特征的春秋非对称模态的模拟能力,讨论了模拟偏差产生的可能原因。分析结果表明,BCC_CSM1.1和BCC_CSM1.1(m)均能合理再现全球年平均降水的基本分布特征,也能较合理再现热带降水年循环模态的基本分布特征,尤其季风模态中降水与环流关于赤道反对称的特征;能够较合理再现春秋非对称模态与热带海洋表面温度(SST)年循环之间的关系。大气温度场、环流场以及热带SST的模拟偏差对降水季风模态有影响;热带SST年循环的偏差对降水春秋非对称模态的模拟偏差有贡献;模式分辨率对降水年循环模态的模拟也有一定影响。对比分析显示,大气模式和陆面模式水平分辨率提高之后模式在某些模拟性能上有所提高,这表现在:BCC_CSM1.1(m)模拟的1~12月降水气候态的空间变率更接近观测;热带海表温度年循环总体上更接近观测;模拟的热带降水年循环模态的部分特征更合理。但BCC_CSM1.1(m)的模拟结果相对观测仍存在较大偏差,有待进一步改进。

References

[1]  王璐,周天军,吴统文,等. 2009. BCC大气环流模式对亚澳季风年际变率主导模态的模拟 [J].气象学报,67(6): 973-982. Wang Lu,Zhou Tianjun,Wu Tongwen,et al. 2009. Simulation of the leading mode of Asian-Australian monsoon interannual variability with the Beijing Climate Center atmospheric general circulation model [J]. Acta Meteorologica Sinica (in Chinese),67(6): 973-982.
[2]  Ammann C M, Meehl G A, Washington W M, et al. 2003. A monthlyand latitudinally varying volcanic forcing dataset in simulations of 20th century climate [J]. Geophys. Res. Lett., 30: 1657, doi:10.1029/ 2003GL016875.
[3]  陈海山, 施思, 周晶. 2011. BCC 气候模式对中国近50a 极端气候事件的模拟评估 [J]. 大气科学学报, 34 (5): 513-528. Chen Haishan, Shi Si, Zhou Jing. 2011. Evaluation of recent 50 years extreme climate events over China simulated by Beijing Climate Center (BCC) climate model [J]. Transactions of Atmospheric Sciences (in Chinese), 34 (5): 513-528.
[4]  丁一汇. 2005. 高等天气学 [M]. 北京: 气象出版社, 138pp. Ding Yihui. 2005. Advanced Synoptic Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 138pp.
[5]  董敏, 吴统文, 王在志, 等. 2009. 北京气候中心大气环流模式对季节内振荡的模拟 [J]. 气象学报, 67 (6): 912-922. Dong Min, Wu Tongwen, Wang Zaizhi, et al. 2009. Simulations of the tropical intraseasonal oscillations by the AGCM of the Beijing Climate Center [J]. Acta Meteorologica Sinica (in Chinese), 67 (6): 912-922.
[6]  董敏, 吴统文, 王在志, 等. 2013. 气候系统模式 (BCC_CSM1.0) 对20世纪降水及其变率的模拟 [J]. 应用气象学报, 24 (1):1-11. Dong M, Wu T, Wang Z, et al. 2013. A simulation study on the precipitation and its variation during the 20th century by using the BCC climate model (BCC_CSM1. 0) [J]. Journal of Applied Meteorological Science (in Chinese), 24 (1): 1-11.
[7]  符淙斌, 曾昭美. 1997. 季风区—全球降水变率最大的地区 [J]. 科学通报, 42 (21): 2306-2309. Fu Congbin, Zeng Shaomei. 1997. Monsoon- The area where the variability of precipitation is most significant [J]. Chinese Science Bulletin (in Chinese), 42 (21): 2306-2309.
[8]  郭准,吴春强,周天军,等. 2011. LASG/IAP和BCC大气环流模式模拟的云辐射强迫之比较 [J].大气科学,35(4): 739-752. Guo Zhun,Wu Chunqiang,Zhou Tianjun,et al. 2011. A comparison of cloud radiative forcing simulated by LASG/IAP and BCC atmospheric general circulation models [J]. Chinese Journal of Atmospheric Sciences (in Chinese),35(4): 739-752.
[9]  Hunke E C, Dukowicz J K. 1997. An elastic-viscous-plastic model for sea ice dynamics [J]. J. Phys. Oceanogr., 27: 1849-1867.
[10]  Jiang J H, Su H, Zhai C X, et al. 2012. Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations [J]. J. Geophys. Res., 117, doi:10.1029/2011JD017237.
[11]  Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77: 437-470.
[12]  Kauffman B G, Large W G. 2002. The CCSM coupler version combined user\'s guide, source code reference and scientific description [R]. National Center for Atmospheric Research, Box 3000, Boulder, CO 80307 U. S. A. 1-46.
[13]  Lau K M, Chan P H. 1983. Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: Lagged correlations [J]. J. Atmos. Sci., 40: 2751-2767.
[14]  林壬萍,周天军,薛峰,等. 2012. NCEP/NCAR再分析资料所揭示的全球季风降水变化 [J].大气科学,36(5): 1027-1040. Lin Renping,Zhou Tianjun,Xue Feng,et al. 2012. The global monsoon variability revealed by NCEP/NCAR reanalysis data [J]. Chinese Journal of Atmospheric Sciences (in Chinese),36(5): 1027-1040.
[15]  Meehl G A. 1987. The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions [J]. Mon. Wea. Rev., 115: 27-50.
[16]  Meehl G A, Washington W M, Santer B D, et al. 2006. Climate change projections for the twenty-first century and climate change commitment in the CCSM3 [J]. J. Climate, 19: 2597-2616.
[17]  Murray R J. 1996. Explicit generation of orthogonal grids for ocean models [J]. J. Comput. Phys., 126: 251-273.
[18]  Slingo J, Inness P, Neale R, et al. 2003. Scale interactions on diurnal to seasonal timescales and their relevance to model systematic errors [J]. Ann. Geophys., 46: 139-155.
[19]  Sperber K R, Palmer T N. 1996. Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project [J]. J. Climate, 9: 2727-2750.
[20]  Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res., 106 (D7): 7183-7192.
[21]  Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93 (4): 485-498.
[22]  Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation [J]. J. Climate, 13: 3969-3993.
[23]  Wang B. 1994. On the annual cycle in the tropical eastern central Pacific [J]. J. Climate, 7: 1926-1942.
[24]  Wang B, Ding Q H. 2008. Global monsoon: Dominant mode of annual variation in the tropics [J]. Dynam. Atmos. Oceans, 44: 165-183.
[25]  Wang B., Kim H J, Kikuchi K, et al. 2011. Diagnostic metrics for evaluation of annual and diurnal cycles [J]. Climate Dyn., 37: 941-955.
[26]  Webster P J, Maga?a T N, Palmer T, et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction [J]. J. Geophys. Res., 103: 14451-14510.
[27]  Winton M. 2000. A reformulated three-layer sea ice model [J]. J. Atmos. Ocean. Tech., 17: 525-531.
[28]  Wu T W, Yu R, Zhang F. 2008. A modified dynamic framework for atmospheric spectral model and its application [J]. J. Atmos. Sci., 65: 2235-2253.
[29]  Wu T W, Yu R C, Zhang F, et al. 2010. The Beijing Climate Center for the Atmospheric General Circulation Model (BCC-AGCM2.0.1): Description and its performance for the present-day climate [J]. Climate Dyn., 34: 123-147.
[30]  Wu T W, Li W P, Ji J J, et al. 2013. Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century [J]. J. Geophys. Res., 118 (10): 4326-4347.
[31]  Xie P P, Arkin P A. 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs [J]. Bull. Amer. Meteor. Soc., 78: 2539-2558.
[32]  Xin X G, Wu T W, Li J L, et al. 2013. How well does BCC_CSM1. 1 reproduce the 20th century climate change over China? [J]. Atmos. Ocean Sci. Lett., 6 (1): 21-26.
[33]  Zhang G J. 1994. Effects of cumulus convection on the simulated monsoon circulation in a general-circulation model [J]. Mon. Wea. Rev., 122: 2022-2038.
[34]  Zhang L, Dong M, Wu T W. 2011. Changes in precipitation extremes over eastern China simulated by the Beijing Climate Center Climate System Model (BCC_CSM1. 0) [J]. Climate Res., 50: 227-245.
[35]  Zhang L, Wu T W, Xin X G, et al. 2012. Projections of annual mean air temperature and precipitation over the globe and in China during the 21st century by the BCC climate system model BCC_CSM1.0 [J]. Acta Meteorologica Sinica, 26 (3): 362-375, doi:10.1007/s13351-012- 0308-8.
[36]  张丽霞, 周天军, 吴波, 等. 2008. 气候系统模式FGOALS_s1. 1对热带降水年循环模态的模拟 [J]. 气象学报, 66 (6): 968-981. Zhang Lixia, Zhou Tianjun, Wu Bo, et al. 2008. The annual models of tropical precipitation simulated by LASG/IAP ocean-atmosphere coupled model FGOALS_s1.1 [J]. Acta Meteorologica Sinica (in Chinese), 66 (6): 968- 981.
[37]  张丽霞, 周天军, 曾先锋, 等. 2011. 积云参数化方案对热带降水年循环模态模拟的影响 [J]. 大气科学, 35 (4): 777-790. Zhang Lixia, Zhou Tianjun, Zeng Xianfeng, et al. 2011. The annual modes of tropical precipitation simulated with LASG/IAP AGCM: Sensitivity to convection schemes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (4): 777-790.
[38]  Zhang Y C, Kuang X Y, Guo W D, et al. 2006. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia [J]. Geophys. Res. Lett., 33: L11708.
[39]  Zhou T J, Yu R C, Li H M, et al. 2008. Ocean forcing to changes in global monsoon precipitation over the recent half-century [J]. J. Climate, 21 (15): 3833-3852.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133