Lorenz, E. N., 1960, Maximum simplification of the dynamic equations, Tellus, 12, 243~ 254.
[2]
Orlanski, I., 1975, A rational subdivision of scales for atmospheric process, Bull. Amer. Meteor. Soc., 56, 527~530.
[3]
Emanuel. K. A., 1983, On the dynamical definition(s) of mesoscale, Mesoscale Meteorology. Theories, Observations and Models, Reidel Publishing Company, 1 ~ 11.
[4]
Pielke, R. A., 1984, Mesoscale Meteorological Modeling, Academic Press.
Spall, M. A. and J. C. McWilliams, 1992, Rotational and gravitational influences on the degree of balance in the shallow-water equations, Geophys. Astrophys. Fluid Dyn., 64, 1 ~ 29.
[11]
叶笃正、李麦村,1964,中小尺度运动中风场和气压场的适应,气象学报,34,309~423.
[12]
Raymond, D. J., 1992, Nonlinear balance and potential-vorticity thinking at large Rossby number, Q. J. R.Meteorol. Soc., 118, 987~ 1015.
[13]
Hoskins, B. J., 1975, The geostrophic momentum approximation and the semi-geostrophic equations, J. Atmos.Sci., 32, 233~ 242.
[14]
Yeh, T. C. and M. T. Li, 1982, On the characteristics of the scales of the atmospheric motions, J. Meteor. Soc.Japan, 60, 16~23.
[15]
Vallis, G. K., 1996, Potential vorticity inversion and balanced equations of motion for rotating and stratified flow, Q. J. R. Meteorol. Soc., 122, 291~ 322.
[16]
凌国灿、丁汝,1987,地转涡双时间尺度内解及其运动,中国科学,B辑,770~779
[17]
Craig, G., 1991, A three-dimensional generalization of Eliassen's balanced vortex equations derived from Hamilton's principle, Q. J. R. Meteorol. Soc., 117, 435~448.
[18]
Gent, P. R. and J. C. McWilliams, 1982, Intermediate model solutions to the Lorenz equations: Strange attractors and other phenomena, J. Atmos. Sci., 39, 3~ 13.
[19]
Whitaker, J. S., 1993, A comparison of primitive and balance equation simulations of baroclinic waves, J.4tmos. Sci., 50, 1519~ 1530.
[20]
Gent, P. R., J. C. McWilliams and C. Snyder, 1994, Scaling analysis of curved fronts: Validity of the balance equations and semigeostrophy, J, Atmos. Sci., 51, 160~ 163.