全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Time Ordering Effects on Hydrogen Zeeman-Stark Line Profiles in Low-Density Magnetized Plasmas

DOI: 10.1155/2010/374372

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stark broadening of hydrogen lines is investigated in low-density magnetized plasmas, at typical conditions of magnetic fusion experiments. The role of time ordering is assessed numerically, by using a simulation code accounting for the evolution of the microscopic electric field generated by the charged particles moving at the vicinity of the atom. The Zeeman effect due to the magnetic field is also retained. Lyman lines with a low principal quantum number are first investigated, for an application to opacity calculations; next Balmer lines with successively low and high principal quantum numbers are considered for diagnostic purposes. It is shown that neglecting time ordering results in a dramatic underestimation of the Stark effect on the low- lines. Another conclusion is that time ordering becomes negligible only when ion dynamics effects vanish, as shown in the case of high- lines. 1. Introduction In magnetic fusion, detailed line shapes are of interest for accurate diagnostics or radiative transfer simulations. For plasma conditions and magnetic fields encountered in the divertor of present and future tokamaks, an accurate model for the line shape of the hydrogen isotopes should include Zeeman and Stark effects, and retain the dynamics of the ion-emitter interaction. Since we then have to solve a quantum time-dependent problem, understanding the role of time ordering becomes an important issue both from the fundamental and computational points of view (note, this problem is also investigated in other contexts, e.g., [1–3]). Time ordering has already been studied in the Stark broadening literature, but generally for the electron broadening [4–7]. Our aim here is to investigate the role of time ordering for the ion perturbation on hydrogen lines for plasmas with temperature in the eV range, and densities of about , conditions which are expected in the divertor of the future ITER tokamak. We recall in Section 2 the basic formalism used for line shape calculations in the presence of Stark and Zeeman effects, and briefly introduce the issue of time ordering. Line shapes in the atom’s frame of reference are considered, that is, in the Doppler free case. We present in Section 3 an ab initio simulation technique able to provide accurate line shapes including all the effects of time ordering. Calculations of hydrogen line shapes of Lyman and Balmer series are presented in Section 4, with and without the effect of time ordering, and compared to calculations performed in the static ion limit. The role of time ordering and the issue of retaining it in a line

References

[1]  J. H. McGuire, A. L. Godunov, K. K. Shakov, et al., “Time ordering in multi-electron dynamics,” Journal of Physics B, vol. 36, no. 2, pp. 209–216, 2003.
[2]  L. Kaplan, K. K. Shakov, A. Chalastaras, M. Maggio, A. L. Burin, and J. H. McGuire, “Time ordering in kicked qubits,” Physical Review A, vol. 70, no. 6, Article ID 063401, 2004.
[3]  D. Lauvergnat, S. Blasco, X. Chapuisat, and A. Nauts, “A simple and efficient evolution operator for time-dependent Hamiltonians: the Taylor expansion,” Journal of Chemical Physics, vol. 126, no. 20, Article ID 204103, 2007.
[4]  C. R. Vidal, J. Cooper, and E. W. Smith, “Hydrogen Stark broadening calculations with the unified classical path theory,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 10, no. 9, pp. 1011–1063, 1970.
[5]  J. T. Godfrey, C. R. Vidal, E. W. Smith, and J. Cooper, “Effect of time ordering in the unified theory,” Physical Review A, vol. 3, no. 5, pp. 1543–1546, 1971.
[6]  L. J. Roszman, “Effects of time ordering on plasma-broadened hydrogen profiles,” Physical Review Letters, vol. 34, no. 13, pp. 785–788, 1975.
[7]  M. A. Gunderson, G. C. Junkel-Vives, and C. F. Hooper Jr., “A comparison of a second-order quantum mechanical and an all-order semi-classical electron broadening model,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 71, no. 2–6, pp. 373–382, 2001.
[8]  V. S. Lisitsa, “Stark broadening of hydrogen lines in plasmas,” Soviet Physics - Uspekhi, vol. 20, p. 603, 1977.
[9]  H. R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, New York, NY, USA, 1997.
[10]  E. Oks, Stark Broadening of Hydrogen and Hydrogenlike Spectral Lines in Plasmas, Alpha Science, Oxford, UK, 2006.
[11]  M. Baranger, “Problem of overlapping lines in the theory of pressure broadening,” Physical Review, vol. 111, no. 2, pp. 494–504, 1958.
[12]  M. Baranger, “General impact theory of pressure broadening,” Physical Review, vol. 112, no. 3, pp. 855–865, 1958.
[13]  J. Rosato, Y. Marandet, H. Capes, et al., “Stark broadening of hydrogen lines in low-density magnetized plasmas,” Physical Review E, vol. 79, no. 4, Article ID 046408, 2009.
[14]  R. Stamm, E. W. Smith, and B. Talin, “Study of hydrogen Stark profiles by means of computer simulation,” Physical Review A, vol. 30, no. 4, pp. 2039–2046, 1984.
[15]  C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” SIAM Review, vol. 45, no. 1, pp. 3–49, 2003.
[16]  D. Reiter, V. Kotov, P. B?rner, K. Sawada, R. K. Janev, and B. Küppers, “Detailed atomic, molecular and radiation kinetics in current 2D and 3D edge plasma fluid codes,” Journal of Nuclear Materials, vol. 363–365, no. 1–3, pp. 649–657, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133