全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2002 

蓟县剖面中―新元古代沉积物的稳定碳同位素生物地球化学研究

, PP. 433-440

Keywords: 蓟县剖面元古宙碳酸盐干酪根可溶单体烃碳同位素有机质生物地球化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文报道了蓟县剖面约1Ga的中一新元古代沉积物中干酪根,可溶单体烃类等沉积有机质与共生碳酸盐的稳定碳同位素特征,并结合剖面古环境和古生物资料对这些同位素数据进行了初步讨论。干酪根和共生碳酸盐碳同位素数据表明,约1.55Ga以前地表环境中CO2浓度曾迅速下降,而之后趋于稳定。沉积碳酸盐和共生干酪根之间的碳同位素差值(△c)记录了燕山盆地元古宙演化中海侵和海退的交替以及随之具有不同适应性生物群落的更迭。剖面1.4Ga以前的干酪根和正构烷烃,类异戊二烯烷烃的稳定碳同位素特征符合正构烷烃和类异戊二烯烷烃主要起源于喜盐古细菌类脂的假设,而之后,三者之间的碳同位素特征表明正构烷烃主要起源于原始落藻类有机质,而类异戊二烯烃则保持着喜盐古细菌类脂的输入。正构烷烃生物起源的转变表明,1.4Ga以后,古燕山盆地水体中原始类脂物质的异养降解程度明显降低。这一降低可能与在此阶段形成的稳定浅水陆表海环境有关。蓟县剖面干酪根与可溶单体烃类的稳定碳同位素关系显示了具有局限海特征的元古宙燕山海盆独特的生物地球化学过程。

References

[1]  杜汝霖,田立富.1985.燕山青白口系宏观藻类龙凤山藻属的发现和初步研究.地质学报,(3):183~190.
[2]  李超,彭平安,盛国英,等.1999.前寒武纪有机质研究进展.科学通报.44:2251~2261.
[3]  李怀坤,李惠民,陆松年.1995.长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义.地球化学,24:43~48.
[4]  王松山,桑海清,裘冀,等.1995.蓟县剖面杨庄组和雾迷山组形成年龄的研究.地质科学,30(2):166~173.
[5]  阎玉忠.1995.中国蓟县团山子组(17亿年)宏观藻类的发现和初步研究.微体古生物学报,12:107~126.
[6]  阎玉忠,刘志礼.1997.中国蓟县长城系团山子宏观藻群.古生物学报,36:18~41.
[7]  阎玉忠,刘志礼.1998a.Sangshuania是真核藻类还是遗迹化石?微体古生物学报,15:101~110.
[8]  阎玉忠,刘志礼.1998b.中国北方燕山盆地长城纪生物群落和古环境关系探讨.微体古生物学报,15:249~266.
[9]  Anderson R, Kates M, 3aedecker M J, et al. 1977. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments. Geochimica et Cosmochimica Acta, 41:1381~1390.
[10]  De Rosa M, Gambacorta A, Gliozzi A. 1986. Structure, biosynthesis and physiochemical properties of archaebacterial lipid. Microbiological Reviews, 50: 70~80.
[11]  Des Marais D J. 1997. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry, 27:185~193.
[12]  Du Rulin, Tian Lifu, Li Hanbang. 1986. Discovery of megafossils in the Gaoyuzhuang Formation of the Changchengian System, Jixian. Acta Geologiea Sinica, (2): 115~120 (in Chinese with English abstract).
[13]  Durand B. 1980. Kerogen. Insoluble organic matter from sedimentary rocks. Paris: Editions Technip, 98~ 140.
[14]  Grice K, Schouten S, Nissenbaum A, et al. 1998. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic Geochemistry, 28 : 349~ 359.
[15]  Hayes J M, Popp B N, Takigiku R, et al. 1989. An isotopic study of biogeochemical relationships between carbonates and organic car bon in the Greenhorn Formation. Geochimica et Cosmochimica Acta, 53:2961~2972.
[16]  Holland H D. 1994. Early Proterozoic atmospheric change. In: Bengtson S, ed. Early Life on Earth. New York:Columbia University Press, 237~244.
[17]  Li Chao, Peng Ping\'an, Sheng Guoying, et al. 1999. Precambrian organic matter. Chinese Science Bulletin, 44:2251~2261 (in Chinese).
[18]  Logan G A, Hayes J M, Hieshima G B, et al. 1995. Terminal Proterozoic reorganization of biogeochemical cycle. Nature, 376: 53~56.
[19]  Oren A. 1993. Availability, uptake and turnover of glycerol in hypersaline environment. FEMS Microbiology Ecology, 12:15 ~ 23.
[20]  Peng P A, Sheng G Y, Fu J M, et al. 2000. Immature crude oils in the salt lake depositional environment are related to organic matter precipitated at stage of carbonate in salt lake sedimentation sequences. Chinese Science Bulletin, 45(Supplement): 1~6.
[21]  Rau G H, Sullivan C W, Gordon L I. 1991. δ13C and δ 15N variations in Weddell Sea particulate organic matter. Marine Chemistry, 35:355~369.
[22]  Riebesell U, Revill A T, Holdsworth D G, et al. 2000. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta. 64:4179~4192.
[23]  Schildlowski M, Gorzawski H, Dor I. 1994. Carbon isotopic varia tions in a solar pond microbial mat: Role of environmental gradi ents as steering variables. Geochimica et Cosmochimica Acta, 58:2289~2298.
[24]  Teixidor P, Grimalt J O, Pueyo J J. 1993. Isopranylglycerol diethers in non-alkaline evaporitic environments. Geochimica et Cosmochimica Acta, 57: 4479~4489.
[25]  Wang Songshan, Sang Haiqing, Qiu Ji, et al. 1995. The forming ages of Yangzhuang and Wumishan Formations in Jixian section,Northern China. Scientia Geologica Sinica, 30(2): 166~ 173 (in Chinese with English abstract).
[26]  Yan Yuzhong. 1995. Discovery and preliminary study of megascopic algae (1700Ma) from the Tuanshanzi Formation in Jixian, Tianjin. Acta Micropaleontologica Sinica, 12: 107~126 (in Chinese with English abstract).
[27]  Yan Yuzhong, Liu Zhili. 1997. Tuanshanzian macroscopic algae of 1700Ma B.P. from Changchengian System of Jixian, China. Acta Paleontologica Sinica, 36:18~41 (in Chinese with English abstract).
[28]  陈晋镳,张惠民,朱士兴,等.1980.蓟县震旦亚界研究.见:中国地质科学院天津地质矿产研究所主编.中国震旦亚界.天津:天津科学技术出版社,56~114.
[29]  杜汝霖,田立富,李汉棒.1986.蓟县长城系高于庄组宏观生物化石的发现.地质学报,(2):115~120.
[30]  李超,彭平安,盛国英,等.2001.蓟县剖面元古宙沉积物(1.8-0.85 Ga)中的生物标志化合物特征.地学前缘,8(4):453~462.
[31]  孙大中,陆松年.1987.华北地台的元古宙构造演化.中国地质科学院院报,l6:55~69.
[32]  阎玉忠.1982.蓟县长城系串岭沟组裂梭藻.中国地质科学院天津地质矿产研究所所刊,6:1~7.
[33]  Chen Jinbiao, Zhang Huimin, Zhu Shixing, et al. 1980. Research on Sinian Suberathem of Jixian, Tianjin. In: Tianjin Institute of Ge ology and Mineral Resources, Chinese Academy of Geological Sciences, ed. Sinian Suberathem in China. Tianjin: Tianjin Science and Technology Press, 56~114 (in Chinese).
[34]  De Rosa M, Gambacorta A, Nicolaus B, et al. 1983. A C25 diether core lipid from archaebacterial haloalkaphiles. Journal of General Microbiology, 129:2333~2337.
[35]  Du Rulin, Tian Lifu. 1985. The discovery and preliminary study of megascopic algae from Qingbaikouan System, Yanshan Basin.Acta Geologica Sinica, (3): 183~ 190 (in Chinese with English abstract).
[36]  Hofmann H J, Chen J B. 1981. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, Northern China. Canadian Journal of Earth Sciences, 18: 443 ~ 447.
[37]  Li Chao, Peng Ping\'an, Sheng Guoying, et al. 2001. A biomarkers study of Paleo- to Neo-Preterozoic (1.8~0.85 Ga) sediments from the Jixian strata section, North China. Earth Science Fron tiers, 8(4):453~462 (in Chinese with English abstract).
[38]  Li Huaikun, Li Huimin, Lu Songnian. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changchengian System and their geological implications. Geochimica, 24:43~48(in Chinese with English abstract).
[39]  Logan G A, Summons R E, Hayes J M. 1997. An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. Geochimica et Cosmochimica Acta, 61: 5391~ 5409.
[40]  Peng P A, Sheng G Y, Fu J M, et al. 1998. Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China. Organic Geochemistry, 29: 1321 ~ 1329.
[41]  Peters D E, Moldowan J M. 1993. The biomarker Guide: interpretating molecular fossils in petroleum and ancient sediments. Englewood Cliffs: Prentice Hall, 255~256.
[42]  Rowland S J. 1990. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Organic Geochemistry, 15:9~16.
[43]  Sun Dazhong, Lu Songnian. 1987. Proterozoic tectonic evolution of Huabei platform. Bulletin of Chinese Academy of Geological Science, 16: 55 ~ 69 (in Chinese with English abstract).
[44]  Yan Yuzhong. 1982. Schizofusa from the Chuanlinggou Formation of Changchengian System in Jixian county. Bulletin of Tianjin Institute of Geology and Mineral Resources, 6:1 ~ 7 (in Chinese with English abstract ).
[45]  Yan Yuzhong, Liu Zhili. 1998a. Does Sangshuania represent eukaryotic algae or trace fossils? Acta Micropaleontologica Sinica, 15:101~110 (in Chinese with English abstract).
[46]  Yan Yuzhong, Liu Zhili. 1998b. The relationship between biocommu nities and paleoenvironments in Changchengian Period of the Yanshan Basin, North China. Acta Micropaleontologica Sinica, 15:249~266 (in Chinese with English abstract).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133