全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2003 

冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义

, PP. 245-252

Keywords: 冈底斯铜矿带,含矿斑岩,40Ar/39Ar年龄,成矿动力学环境

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原南部冈底斯斑岩铜矿带的含矿斑岩具有埃达克岩的本质特征,是由俯冲到深部的新特提斯洋壳在榴辉岩相条件下部分熔融形成的.本文用冲江和拉抗俄两个矿区含矿斑岩的黑云母和斜长石斑晶测定了它们的40Ar/39Ar年龄,结果表明两个矿区虽然相隔百余千米,但形成时间非常一致.两个黑云母斑晶的坪年龄分别为13.5±1.0Ma和13.42±0.10Ma;两个斜长石斑晶分别给出了12.22±0.05Ma和12.5±1.3Ma的坪年龄.考虑到斜长石和黑云母对40Ar/39Ar系统较低的封闭温度,这些结果与辉钼矿给出的斑岩铜矿的Re-Os等时线成矿年龄(14Ma±)是一致的.根据含矿斑岩的产出位置和形成时间推测,印度板块沿雅鲁藏布江缝合带可能以高角度向亚洲大陆下俯冲进入岩石圈地幔.含矿斑岩和矿(化)带近EW向产出指示着斑岩岩浆上升侵位和铜矿化过程与高原达到最大高度的隆升过程是同步的.在此之后,高原的应力体制转变为Ew向伸展,在重力作用下形成了一系列SN向塌陷构造-裂谷和正断层.

References

[1]  曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?矿床地质.20(4):355~366.
[2]  曲晓明,侯增谦,李佑国等.200Z b.S、P同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报,21(11):768~776.
[3]  赵文津,INDEPTH项目组.2001.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究.北京:地质出版社.
[4]  Argand E. 1924. La Tectonique de L\' Asie. Proc. 13th Int. Geol.Congress, 7: 171~372.
[5]  Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K,Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A,Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia.Nature, 373: 55~58.
[6]  Coulon C, Maluski H, Bollinger C, Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance.Earth Planet. Sci. Lett. , 79: 281~302.
[7]  Dewey JF, Shaceelton RM, Chang C, Sun Y. 1988. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond. ,A327: 379~413.
[8]  Harrison T M, Copeland P, Kidd W S F, Yin A. 1992. Raising Tibet. Science, 255: 1663~1670.
[9]  Jin Y, McNutt MK, Zhu YS. 1996. Mapping the decsent of Indian and Eurasian plates beneath the Tibetan Plateau form gravity anomalies. J. Geophys. Res. , 101: 11 275~11 290.
[10]  Le Fort P. 1996. Evolution of the Himalaya. In the tectonics of Asia,ed. A Yin, TM Harrison, Cambridge University Press, New York, 95~106.
[11]  Maheo G, Guillot S, Blichert-Toft J, et al. 2002. A slab breakoff model for the Neogene thermal evolution of south Karakorum and south Tibet. Earth Planet. Sci. Lett, 195: 45~58.
[12]  Ni J, Barazangi M. 1984. Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian Plate beneath the Himalaya. J. Geophys. Res. , 89:1 147~1 163.
[13]  Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and .basins during the India-Asia collision: An experimental approach. J. Geophys. Res., 93:15 085~15 117.
[14]  Sebly D and Creaser R A. 2001. Late and mid-Cretaceous mineralization in the northern Canadia Cordillera:constraints from Re-Os molybdenite dates. Economic Geology, 96:1461~1467.
[15]  Tunrer S, Hawkesworth C J, Liu J, Rogers N, Kelley S, van Calsteren P. 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50~53.
[16]  Williams H, Turner S, Kelley S, Harris N. 20001. Age and composition of dikes in southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29: 339~342.
[17]  Yin A, Harrison T M. 2000. Geologic evolution of the HimalayanTibetan orogen. J. Ann. Rev. Earth Planet. Sci., 28: 211~280.
[18]  侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带.中国地质.28(10);27~29.
[19]  曲晓明,侯增谦,李佑国,等.2002 a.冈底斯碰撞造山带发现含矿埃达克岩.矿床地质.21(增刊);215~218.
[20]  王希斌,鲍佩声,邓万明,等.1987.西藏蛇绿岩.北京:地质出版社.
[21]  Allegre C J, 34 others. 1984. Structure and evolution of the Himalayan-Tibet orogenic belt. Nature, 307: 17~ 22.
[22]  Coleman M, Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension.Nature, 374: 49~52.
[23]  Dewey JF, Burke K, Tibetan. 1973. Variscan and Precambrian basement reactivation: products of continental collision. J. Geol. ,81: 683~692.
[24]  Durr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol. Soc. Am. Bull., 108: 669~684.
[25]  Gaetani M, Garzanti E. 1991. Multicyclic history of the northern India continental margin (northwestern Himalaya). Am Assoc.Pet. Geol. Bull. , 75: 14271~446.
[26]  Harrison T M, Grove M, Mckeegan K D, Coath C K, Lovers O M,Le Fort P. 1999. Origin and episodic emplacement of the Manaslu instrusive complex, Central Himalaya. J. Petrol. , 40: 3~9.
[27]  Kincaid C, Silver P. 1996. The role of viscous dissipation in the orogenic process. Earth Planet. Sci. Lett. 142: 271~288.
[28]  Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia; effects of a continental collision. Science, 189: 419~426.
[29]  Pierce J A, Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud. Phil Trans. Roy. Soc. Lond. ,A327 : 203~213.
[30]  Powell CM, Conaghan PG. 1973. Plate tectonics and the Himalayas.Earth Planet. Sci. Lett. , 20: 1~12.
[31]  Shares E, Xu R H, Allegre C J. 1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaze region,Tibet. Earth Planet. Sci. Lett. , 69: 311~320.
[32]  Tapponnier P, Molnar PJ. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319~324.
[33]  Yin A, Harrison T M, Ryerson F J, Ch W, Kidd W S F, Copeland P. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J. Geophys. Res., 99: 18175 ~18201.
[34]  Yin J, Xu J, Liu C, Li H. 1988. The Tibetan plateau: regional stratigraphic context and previous work. Phil Trans. Roy. Soc.Lond. , A327: 5~52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133