全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2004 

云南会泽超大型铅锌矿床硫同位素和稀土元素地球化学研究

, PP. 507-518

Keywords: 硫同位素,REE,成矿流体,云南会泽超大型铅锌矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

云南会泽超大型铅锌矿床规模大、品位富、伴生有用元素多,暗示其成矿环境较为特殊。本文分析该矿床原生矿体中矿石矿物的硫同位素组成和脉石矿物方解石的REE含量,结合前人的碳、氢、氧、铅同位素分析资料和成矿年代测试结果,探讨矿床成矿流体的来源。矿床原生矿体中的硫化物均富集重硫,其δ34S值集中于13‰~17‰之间,且有δ34S黄铁矿>δ34S闪锌矿>δ34S方铅矿,表明成矿流体的硫已达到平衡;硫化物的δ34S值与矿区和区域地层中膏盐层的δ34S值相近,暗示成矿流体中的硫主要来自地层海相硫酸盐的还原,热化学还原是地层海相硫酸盐形成还原态硫的主要还原机制。矿区脉石矿物方解石的REE含量相对高于本区各时代碳酸盐地层,低于非碳酸盐地层和峨眉山玄武岩,其REE配分模式和有关REE参数也与地层和峨眉山玄武岩存在明显差异;进一步分析结果显示,矿床成矿流体是一种壳-幔混合流体,伴随峨眉山玄武岩岩浆活动过程中地幔流体(包括地幔去气和岩浆去气形成的流体)参与了矿床成矿流体的形成

References

[1]  陈士杰.1986.黔西滇东北铅锌矿成因探讨.贵州地质,3(3):211~222.
[2]  韩润生,陈进,李元,马德云,高德荣,赵得顺.2001a.云南会泽麒麟厂铅锌矿床构造地球化学及定位预测.矿物学报,21(4):667~673.
[3]  黄智龙,陈进,刘从强,韩润生,李文博,赵德顺,高德荣,冯志宏.2001.峨眉山玄武岩与铅锌矿床成矿的关系初探-以云南会泽铅锌矿床为例.矿物学报,21(4):681~688.
[4]  李文博,黄智龙,陈进,韩润生,管涛,许成,高德荣,赵德顺.2002.云南会泽超大型铅锌矿床成矿物质来源:来自矿区外围地层及玄武岩成矿元素含量的证据.矿床地质,21(增刊):413~416.
[5]  李文博,黄智龙,王银喜,陈进,许成,管涛,尹牡丹.2003.云南会泽超大型铅锌矿床方解石Sm-Nd等时线定年及其地质意义.地质论评,50(2):189~195.
[6]  周朝宪.1998.滇东北麒麟厂锌铅矿床成矿金属来源、成矿流体特征和成矿机理研究.矿物岩石地球化学通报,17(1):34~36.
[7]  Anderson I K, Ashton J H, Boyce A J, Fallick A E , Russell M J.1998 . Ore depositional processes in the Navan Zn + Pb deposit,Ireland. Econ. Geol. , 93: 535~563.
[8]  Chen Shijie. 1986. The discussions on genesis of Pb-Zn deposits in West Guizhou Province and Northeast Yunnan Province. Geology of Guizhou, 3(3): 211~222(in Chinese with English abstract).
[9]  Davies J F, Prevec S A, Whitehead R E, Jackson S E. 1998.Variations in REE and Sr-isotope chemistry of carbonate gangue ,Castellanos Zn-Pb deposit, Cuba. Chem. Geol., 144(1~2): 99~119.
[10]  Dixon G, Davidson G J. 1996. Stable isotope evidence for thermochemical sulfate reduction in the Dugald River (Austral ia)strata-bound shale-hosted zinc-lead deposit. Chem. Geol. , 129:227~246.
[11]  Fang Hua, Yang Jilin, Wu Daicheng, Ma Jianshe. 2000. Discussions on the characteristics of stable isotopes and genesis of Qilinchang Pb-Zn deposit. Geological Exploration for Non-ferrous Metals, 9(1~2): 114~116 (in Chinese with English abstract).
[12]  Han Runsheng, Chen Jin, Li Yuan, Ma Deyun, Gao Derong, Zhao Deshun. 2001a. Tectono-geochemical features and orientation prognosis of concealed ores of Qilinchang Lead-zinc Deposit in Huize, Yunnan. Acta Mineralogica Sinica, 21 (4): 667~ 673 (in Chinese with English abstract).
[13]  Han Runsheng, Liu Congqiang, Huang Zhilong, Chen Jin, Ma Deyun, Li Yuan. 2001b. Genesis modeling of Huize Lead-zinc Ore Deposit in Yunnan. Acta Mineralogica Sinica, 21(4): 674~680 (in Chinese with English abstract).
[14]  Huang Zhilong, Chen Jin, Liu Congqiang, Han Runsheng, Li Wenbo,Zhao Deshun, Gao Derong, Feng Zhihong. 2001. A preliminary discussion on the genetic relationship between Emeishan basalt and deposits as exemplifide by Huize Pb-Zn deposit, Yunnan Province. Acta Mineralogica Sinica , 21 (4): 681~688 (in Chinese with English abstract).
[15]  Jorgenson B B, Isaksen M F , Jannasch H W. 1992. Bacterial sulfate reduction above 100°C in deep sea hydrothermal vent sediments.Science, 258: 1756~1757.
[16]  Li Lianju, Liu Hongtao, Liu Jishun. 1999. A discussion on the source bed of Pb-Zn-Ag deposits in Northeast Yunnan. Geological Exploration for Non-ferrous Metals, 8(6): 333~339 (in Chinese with English abstract).
[17]  Li Wenbo, Huang Zhilong, Wang Yinxi, Chen Jin, Xu Cheng, Guan Tao , Yin Mudan. 2003. Sm-Nd isotope dating of calcites:implications for the genesis of the Huize Giant Pb-Zn deposits.Geological Review, 50 (2): 189~195 (in Chinese with English abstract).
[18]  Michard A. 1989. Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta, 53: 745~750.
[19]  Moller P, Morteani G, Hoefs J, Parekh P B. 1979. The origin of the ore bearing solution in the Pb-Zn veins of western Harz/Germany as deduced from rare earth element and isotope distributions in calcite. Chem. Geol. , 26: 197~225.
[20]  Moller P, Morteani G, Dulski P. 1984. The origin of the calcites from Pb-Zn veins in the Harz Mountains, Federal Republic of Germany. Chem. Geol. , 45: 91~112.
[21]  Ohmoto H, Kaiser C J, Geer K A. 1990. Systematics of sulphur isotopes in recent marine sediments and ancient sediment-hosted base metal deposits. In: Herbert H K, Ho S E, eds. Stable Isotopes and Fluid Processes in Mineralisation. Geol. Dep. Univ.Extens. , Univ. of Western Australia. 23: 70~120.
[22]  Ohr W. 1982. Rate and mechanism of non-microbial sulfate reduction.Geol. Soc. Am. , Abstr. Prog. , 14:580 (abstract).
[23]  Rye D M, Williams N. 1981. Studies of the base metal sulfide deposits at McArthur River, Northern Territory , Australia: Ⅲ. The stable isotope geochemistry of the H. Y. C. , Ridge, and Cooley deposits. Econ. Geol. , 76: 1~26.
[24]  Toland W G. 1960. Oxidation of organic compounds with aqueous sulfate. J. Am. Chem. Soc. , 82: 1911~1916.
[25]  Zhou Chaoxian , Wei Chunsheng, Guo Jiyun, Li Chaoyang. 2001.The source of metals in the Qilinchang Zn-Pb deposit,Northeastern Yunnan , China: Pb-Sr isotope constraints. Econ.Geol. , 96:583~598
[26]  Zhong Shaojun, Mucci A. 1995. Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25℃ and latm,and high dissolved REE concentrations. Geochim. Cosmochim.Acta, 59(3) :443~453.
[27]  陈进.1993.麒麟厂铅锌硫化矿矿床成因及成矿模式探讨.有色金属矿床与勘查,2(2):85~89.
[28]  方华,杨继林,吴代城,马建设.2000.麒麟厂铅锌矿床稳定同位素特征及成因探讨.有色金属矿产与勘查,9(1~2):114~116.
[29]  韩润生,刘从强,黄智龙,陈进,马德云,李元.2001b.论云南会泽富铅锌矿床成矿模式.矿物学报,21(4):674~680.
[30]  李连举,刘洪涛,刘继顺.1999.滇东北铅、锌、银矿床矿源层问题探讨.有色金属矿产与勘查,8(6):333~339.
[31]  柳贺昌,林文达.1999.滇东北铅锌银矿床规律研究.昆明:云南大学出版社.
[32]  张位及.1984.试论滇东北Pb-Zn矿床的沉积成因和成矿规律.地质与勘探,(7):11~16.
[33]  Anderson I K, Andrew C J, Ashton J H, Boyce A J, Caulfield J B D,Fallick A E , Russell M J. 1989. Preliminary sulfur isotope data of diagenetic and vein sulfides in the Lower Palaeozoic strata of Ireland and southern Scotland: Implications for Zn + Pb +Ba mineralization. Geological Society of London Journal, 146:715~720.
[34]  Boven A, Pasteels P, Punzalan L E, Liu J, Luo X, Zhang W, Guo Z,Hertogen J. 2002. 40Ar/39Ar geochronological constraints on the age and evolution of the Permo-Triassic Emeishan volcanic Province, Southwest China. J. Asian Earth Sci. , 20: 157~175.
[35]  Chen Jin. 1993. Genesis and metalogenic pattern of the Qilinchang PbZn deposit. Geological Exploration for Non-ferrous Metals, 2(2):85~89 (in Chinese with English abstract).
[36]  Dejonghe J, Boulegue J, Demaffe D, Letolle R. 1989. Isotope geochemistry (S, C, O, Sr, Pb) of the Chaudfontaine mineralization (Belgium). Mineral. Deposita, 24: 132~134.
[37]  Ghazban F, Schwarcz H P, Ford D C. 1990. Carbon and sulfur isotope evidence for in situ reduction of sulfate in Nanisivik zinclead deposits, Northwest Territories, Baffin Island, Canada.Econ. Geol. , 85: 360~375.
[38]  Hu Ming-An, Disnar J R, Surean J F. 1995. Organic geochemical indicators of biological sulphate reduction in early diagenetic Zn-Pb mineralization: the Bois-Madame deposit ( Gard, France ).Applied Geochem. , 10(4): 419~435.
[39]  Huang Zhilong, Li Wenbo, Chen Jin, Han Runsheng, Liu Congqiang,Xu Cheng , Guan Tao. 2003. Carbon and oxygen isotope constraints on mantle fluid involvement in the mineralization of the Huize super-large Pb-Zn deposits, Yunnan Province, China.Joural of Geochemical Exploration, 78~ 79: 637~642.
[40]  Kaiser C , Ohmoto H. 1987. Kinetics of sulfate reduction by organic matter under hydrothermal conditions. Geol. Soc. Am. Annu.Meet. Abstr. , 19: 721.
[41]  Li Wenbo, Huang Zhilong, Chen Jin, Han Runsheng, Guan Tao, Xu Cheng, Gao Derong , Zhao Deshun. 2002. The source of oreforming materials in the Huize Giant Pb-Zn Deposits of Yunan Province: The proofs on ore-forming elements in Emeishan Basalt and strata distributed in periphery of mining area. Mineral Deposits, 21 (Supp.) : 413~416 (in Chinese).
[42]  Liu Hechang, Lin Wenda. 1999. Study on the law of Pb-Zn-Ag ore deposit in Northeast Yunnan, China. Kunming: Yunnan University Press.
[43]  Machel H G. 1989. Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis,hydrocarbon accumulations, salt domes, and metal sulphide deposits. Carbonates Evaporites, 4: 137~151.
[44]  Michael B. 1991. REE mobility during hydrotherma1 and metamorphic fluid-rock interaction and the significance of the oxidation state of Europium. Chem. Geol., 93:219~230.
[45]  Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. , 67: 551~579.
[46]  Qi Liang, Hu Jing, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51: 507~513.
[47]  Sverjensky D M. 1984. Europium rodox equilibrium in aqueous solutions. Earth Planet. Sci. Lett. , 67: 70~78.
[48]  Zhang Weiji. 1984. The discussions on sedimentary genesis and metallogenic laws of Pb-Zn deposits in northeastern Yunnan Province. Geology and Prospecting, (7):11~16 (in Chinese).
[49]  Zhou Chaoxian. 1998. The source of mineralizing metals, geological characterization of ore-forming solution and metallogenetic mechanism of Qilinchang Zn-Pb deposit, Northeastern Yunnan Province, China. Bulletin of Mineralogy Petrology and Geochemistry, 17 (1): 34~36 (in Chinese with English abstract).
[50]  Zhou Meifu, Malpas J, Song X Y, Paul T Robinson, Sun M, Allen K Kennedy, C Michael Lesher, Reid R Keays. 2002. A temporal link between the Emeishan large igneous province (SW China)and the end-Guadalupian mass extinction. Earth Planet. Sci.Lett. , 196: 113~122.
[51]  周朝宪.1996.滇东北麒麟厂铅锌矿床成矿金属来源、成矿流体特征和成矿机理研究.中国科学院地球化学研究所硕士学位论文.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133