全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2004 

钙钛矿(ABX3)型结构畸变的几何描述及其应用

, PP. 345-351

Keywords: 钙钛矿,晶体结构,容忍因子,八面体扭转,体积参数法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论了钙钛矿型(ABX3型)化合物的容忍因子(tolerancefactor)、八面体扭转(octahedraltilting)和体积参数(globalparameterizationmethod,缩写为GPM)等几何参数与钙钛矿型结构及其畸变结构之间的关系,并在此基础上对钙钛矿YbNiO3的晶体结构以及钙钛矿MgSiO3和ScAlO3在压力下的结构变化分别进行了理论预测。预测结果与实验结果基本一致

References

[1]  Aleksandrov K S. 1978. Mechanisms of the ferroelectric and structural phase transitions, structural distortions in perovskites.Ferroelectrics. 20: 61~67.
[2]  Ball C J, Begg B D. Cookson D J. Thorogood G J, Vance E R. 1998.Structures in the system CaTiO3/SrTiO3. J. Solid State Chem. ,139: 238~247.
[3]  Buttner R H, Maslen E N. 1992. Electron difference density and vibration tensors in SrTiO3. Acta Cryst. , B48: 639~644.
[4]  Glazer A M. 1975. Simple way of determining perovskite structures.Acta Cryst.. A31: 756~762.
[5]  Kennedy B J, Hunter B A. 1998. High-temperature phases of SrRuO3. Physical Review, B58: 653~658.
[6]  Kennedy B J, Howard C J, Chakoumakos B C. 1999a. Phase transitions in perovskite at elevated temperatures-- a powder neutron diffraction study. J. Phys.: Condens Matter, 11: 1479~1488.
[7]  Kudoh Y, Ito E, Takeda H. 1987. Effect of pressure on the crystal structure of perovskite type MgSiO3. Phys. Chem. Minerals,14: 350~354.
[8]  Lufaso M W. 2002. Ph. D Dissertation, The Ohio State University
[9]  Magyari Kope B, Vitos L, Johansson B, Kollar J. 2002. Model structure of perovskites: cubic orthorhombic phase transition.Computational Materials Science, 25: 615 ~ 621.
[10]  Qin S, Becerro A I, Seifert F, Gottsmann J, Jiang J. 2000. Phase transitions in Ca1-xSrxTiO3 perovskites: effects of composition and temperature. J. Mater Chem. , 10: 1609~1615.
[11]  Ross N L. 1998. High pressure study of ScAlO3 perovskite. Phys.Chem. Minerals, 25: 597~602.
[12]  Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. , A32: 751~767.
[13]  Thomas N W. 1998. A new global parameterization of perovskite structures. Acta Cryst, B54: 585~599.
[14]  Unoki J, Sakudo T. 1967. Electron spin resonance of Fe3+ in SrTiO3with special reference to the 110 oK phase transition. J. Phys.Soc. Japan, 23: 546~552.
[15]  Woodward P M. 1997a. Octahedral tilting in perovskites Ⅰ.geometrical considerations. Acta Cryst. , B53: 32~43.
[16]  Zhao Y, Weidner D J, Parise J B, Cox D E. 1993. Thermal expansion and structural distortion of perovskite-data for NaMgF3 perovskite. Part Ⅱ. Physics of the Earth and Planetary Interiors,76: 17~34.
[17]  Aleksandrov K S. 1976. The sequences of structural phase transitions in perovskites. Ferroelectrics. 14: 801~805.
[18]  Aleksandrov K S, Bartolome J. 2001. Structural distortions in families of perovskite-like crystals. Phase Transitions, 74: 255~335.
[19]  Barth T. 1925. Die Kristallstruktur yon Perowskit und verwandter Verbindungen. Norsk Geologisk Tidsskrift, 8: 201~216.
[20]  Glazer A M. 1972. The classification of tilted octahedra in perovskites. ActaCryst. , B28: 3384~3391.
[21]  Goldschmidt V M.1926. Geochemische Verteilungsgesetze der Elements VII. Skrifter Norske Videnskaps Akademi Maternatisk Naturvidensakaplig, K1: 2~3.
[22]  Horiuchi H, Ito E, Weidner D J. 1987. Perovskite-type MgSiO3:single-crystal X ray diffraction study. American Mineralogist,72: 357~360.
[23]  Howard C J, Stokes H T. 1998. Group-theoretical analysis of octahedral tilting in perovskites. ActaCryst. , B54: 782~789.
[24]  Kennedy B J, Howard C J, Chakoumakos B C. 1999b. Hightemperature phase transitions in SrZrO3. Physical Review, B59:4023~4027.
[25]  Lufaso M W, Woodward P M. 2001. Predictions of the crystal structures of perovskites using the software program SpuDS. Acta Cryst. , B57: 725~738.
[26]  Magyari Kope B, Vitos L, Johansson B, Kollar J. 2001.Parametrization of perovskite structures: an ab initio study. Acta Cryst. , B57: 491~496.
[27]  Medarde M L. 1997. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys.: Condens Matter,9: 1679~1707.
[28]  O\'Keeffe M, Hyde B G. 1977. Some structures topologically related to cubic perovskite (E21), ReO3 (D09) and Cu3Au (Ll2). Acta Cryst. , B33: 3802~3813.
[29]  Qin S, Wu X, Seifert F, Becerro A I. 2002. Micro-Raman study of perovskites in the CaTiO3 SrTiO3 system. J. Chem. Soc. Dalton Trans, 19: 3751~3755.
[30]  Randall C A, Bhalla A S, Shrout T R, Cross L E. 1990.Classification and consequences of complex lead perovskite ferroelectrics with regard to B site cation order. J. Mater Res. ,5: 829~834.
[31]  Redfern S A T. 1996. High-temperature structural phase transitions in perovskite (CaTiO3). J. Phys.: Condens Matter, 8: 8267~8275.
[32]  Sasaki S, Prewitt C T, Bass D, Schulze W A. 1987. Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Cryst. , C43: 1668~1674.
[33]  Thomas N W. 1996. The compositional dependence of octahedral tilting in orthorhombic and tetragonal perovskites. Acta Cryst. ,B52: 16~31.
[34]  Vitos L, Skriver H L, Johansson B, Kollar J. 2000. Application of the exact muffin-tin orbitals theory: the spherical cell approximation. Computational Materials Science, 18: 24~38.
[35]  Vitos L. 2001. Total-energy method based on the exact muffin-tin orbitals theory. Physical Review, B64, ar. no. 014107.
[36]  Woodward P M. 1997b. Octahedral tilting in perovskites Ⅱ. structure stabilizing forces. Acta Cryst. , B53: 44~66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133