全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2005 

松辽盆地白垩纪青山口阶的同位素地层标志及其与海相Cenomanian阶的对比

, PP. 150-156

Keywords: 白垩纪,青山口阶,同位素,松辽盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究利用大庆油田在松辽盆地中部的岩心样品进行了青山口组有机碳稳定同位素的测试,通过化学地层和生物地层研究提出了青山口阶的顶底标志。在青山口组底部同位素值最低,为-32.2‰,与介形虫Cyprideaelliptica的消失界面吻合。同位素值随后迅速上升,形成底界之上的第一个峰值,为-28.1‰。随后的4个峰值自下而上分别是-28‰、-27.8‰、-27.3‰和-26.6‰,相间的低峰值一般处于-30‰~-29‰左右。最为重要的是,有机碳稳定同位素值在青山口组顶部出现一个明显的异常,由-29.5‰急剧升为-23.1‰,随后又迅速降为-30.12‰,形成一个明显的正向峰值。这一正向偏移的位置与介形类Cyprideapanda和Triangulicyprisfusiformis的消失界面基本吻合,并与全球Cenomanian-Turonian界线稳定同位素事件表现一致。据此,将这一稳定同位素正向偏移确定为青山口阶顶界的化学标志。通过这一标志可以将青山口阶的顶界与海相Cenomanian阶顶界进行对比。研究结果表明,化学地层标志是陆相与海相地层的对比的渠道。青山口阶的有机碳稳定同位素值具有全球一致的意义,与我国西藏南部海相地层,乃至全球重要地区Cenomanian-Turonian阶稳定同位素界线均具有可比性。

References

[1]  刘招君 王东坡.松辽盆地白垩纪沉积特征[J].地质学报,:.
[2]  王璞俊 杜小弟.松辽盆地白垩纪年代地层研究及地层时代划分[J].地质学报,:.
[3]  全国地层委员会.中国区域年代地层(地质年代)表说明书[M].北京:地质出版社,2002..
[4]  Arthur M A, Schlanger S O. 1979. Cretaceous "Oceanic Anoxie Events" as causal factors in development of reef-reservoired giantoil fields. Amer. Assoc. Petrol. Geol. Bull., 63:870-885.
[5]  Caron M, Robaszynski F, Amedro F, Baudin F, Deconinck J F,Hochuli P, Salis Perch Nielsen K0 Tribovillard N. 1999.Estimation de la duree de l\\'evenement anoxique global au passage Cenomanien/Turonien. Approche cyclostratigraphique dans la formation Bahloul en Tunisie centrale. Bull. Soc. Geol. France,170: 145-160.
[6]  Grocke D R, Hesselbo S P, Jenkyns H C. 1999. Carbon isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea level change. Geology, 27:155158.
[7]  Hasegawa T. 2003. Cretaceous terrestrial paleoenvironments of northeastern Asia suggested from carbon isotope stratigraphy:Increased atmospheric Pco2-induced climate. Journal of Asian Earth Sciences, 21 : 849-859.
[8]  Jenkyns H C. 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London, 137: 171-188.
[9]  Kuhnt W, Nederbragt A J, Leine L. 1997. Cyclicity of CenomanianTuronian organiccarbon-rich sediments in the Tarfaya AtlanticCoastal Basin, Morocco. Cretaceous Research, 18 : 587-601.
[10]  Schlanger S O, Jenkyns H C. 1976. Cretaceous oceanic anoxic events:Causes and consequences. Geol. Mijnbouw, 55: 179-184.
[11]  Scholle P A, Arthur M A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. AAPG Bull. , 64:67-87.
[12]  Wan Xiaoqiao, Wignall P B, Zhao Wenjin. 2003b. The CenomanianTuronian extinction and oceanic anoxic event: evidence from South Tibet. Paleogeography, Paleoclimatology, Paleoecology,199 (3-4):283-298.
[13]  万晓樵 李艳 等.白垩纪黑色页岩与海水含氧量变化――以西藏南部为例[J].中国地质,2003,30(1):36-47.
[14]  高瑞棋 赵传本.乔秀云.郑玉龙 闫风云 万传彪.松辽盆地白垩纪石油地层孢粉学[M].北京:地质出版社,1999.8-80.
[15]  高瑞祺.松辽盆地白垩纪陆相沉积特征[J].地质学报,1980,54(1):9-23.
[16]  叶得泉 黄清华 张莹.松辽盆地白垩纪介形类生物地层学[M].北京:石油工业出版社,2002.1-312.
[17]  Arthur M A, Dean W E, Schlanger S O. 1985. Variations in global carbon cycling during the Cretaceous related to cllmate,volcanism, and changes in atmospheric CO2. In: Sundquist E T,Broecker W S eds. The Carbon Cycle and Atmospheric CO2:Natural Variations Archean to Present. Geophys. Monogr.,Am. Geophyics. Union, 32: 504-529.
[18]  Arthur M A, Dean W Eo Pratt L M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714-717.
[19]  Bartley J K. 2004. Marine carbon reservoir, Corg-Ccarb coupling,and the evolution of the Proterozoie carbon cycle. Geology, 32(2): 129-132.
[20]  Gale A S, Jenkyns H C, Kennedy W J, Corfield R M. 1993.Chemostratigraphy versus biostratigraphy: data from around the Cenomanian-Turonian boundary. J. Geol. Soc. London, 150:29-32.
[21]  Hart M B. 1991. The Late Cenomanian calcisphere global bioevent.Proc. UssherSoc., 7: 413-417.
[22]  Jarvis I, Carson G, Hart M, Leary P, Tocher B A. 1988. The Cenomanian-Turonian (Late Cretaceous) anoxic event in SWEngland, evidence from Hooken Cliffs near Beer, SE Devon.Newsletters on Strat, 18: 147-164.
[23]  Jenkyns H C, Gale A S, Corfield R M. 1994. Carbon- and oxygenisotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance. Geol. Mag., 131: 1-34.
[24]  Liu Zhaojun, Wang Dongpo, Liu Li, Liu Wanzhu, Wang Pujun, Du Xiaodi, Yang Guang. 1992. Sedimentary Characteristics of the Cretaceous Songliao Basin. Acta Geologica Sinica, 66(4): 327-338.
[25]  Meyers S R, Sageman B B, Hinnov L A. 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone Member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Research, 71:628-644.
[26]  Prokoph A, Villeneuve M, Agterberg F P, Rachold V. 2001.Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary. Geology, 29: 523-526.
[27]  Tsikos H, Jekyns H C, Walsworth Bell B, et al. 2004. Carbon isotope stratigraphy recorded by the Cenomanian/Turonian Oceanic Anoxie Event: correlation and implication based on three key localities. Journal of Geological Society of London, 161(4):711-719.
[28]  Yapp C J, Poths H. 1996. Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure.Earth and Planetary Science Letters, 137 (1-4) : 71-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133