全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2006 

塔里木盆地寒武纪--奥陶纪优质烃源岩沉积与古环境变化的关系:碳氧同位素新证据

, PP. 459-466

Keywords: 寒武纪,奥陶纪,碳、氧同位素,古气候,烃源岩,TOC

Full-Text   Cite this paper   Add to My Lib

Abstract:

对塔里木盆地东部塔东2井上震旦统和寒武系-奥陶系样品进行TOC和碳、氧同位素及微量元素分析,发现该井稳定碳、氧同位素值在寒武系-中奥陶统发生明显变化,该层还赋存高有机质丰度烃源岩,其TOC值的高低可反映当时的生物产率和埋藏率.碳和氧同位素值在寒武系/上震旦统分界处正向漂移,说明正好在进入寒武纪前气候明显变冷,海平面下降.接着,下寒武统底部以碳和氧同位素值的快速负向漂移为标志,表明古气候迅速变暖和海平面大幅度上升,烃源岩TOC值也达到全井柱最高值.古气候显著波动、海平面最高及其频繁变化和沉积物高TOC是早寒武世的显著特征;而晚寒武世-早奥陶世,同位素正向漂移,暗示海平面下降,沉积物TOC也随之下降并降至最低;到了早奥陶世末,即早、中奥陶世的过渡时期,同位素又开始负向漂移,TOC又开始升高;中奥陶世,同位素强烈负向漂移,TOC又升至新高.稳定碳、氧同位素值的变化及其所指示的古气候与海平面变化,以及与TOC的响应关系,指示冰期、冰后期之交,古气候迅速变暖和海平面大幅度上升有利于烃源岩发育;同时暗示,δ13C、δ18O与生烃母质生物的有机生产率、有机埋藏率之间存在某种内在联系.即高TOC含量反映高的有机生产率和高的有机埋藏率;而与其同步反方向变化的δ13C、δ18O则暗示海平面较高,沉积环境属远陆海域,表层水中生烃母质生物的光合作用很强.而有机质的高产率和高埋藏率,导致海水中δ12C和δ16O被大量地固定在沉积物中.这样,就使海水中相对富集13C和18O重同位素而使海水变"重";而这种"重"海水,又导致了同时期浅水区碳酸盐沉积物的δ13C和δ18O值明显增高.

References

[1]  陈代钊,陈其英,江茂生.1995.泥盆纪海相碳酸盐岩碳同位素组成及演变.岩相古地理,15(5):22~28.
[2]  郭福生,彭花明,潘家永等.2003.浙江江山寒武系碳酸盐岩碳氧同位素特征及其古环境意义探讨.地层学杂志,27(4):289~297.
[3]  田景春,曾允孚.1995.贵州二叠系海相碳酸盐岩碳、氧同位素地球化学演化规律.成都理工学院学报,22(1):78-82.
[4]  Arthur M A,Dean W E,Pratt L M.1988.Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary.Nature,335,714~717.
[5]  Janvier P.1999.Catching the first fish.Nature,402,21~22.
[6]  Kuypers M M,Pancost R D,Jaap S,Sinninghe Damsté J S.1999.A large and abrupt fall in atmospheric CO2 concentration during cretaceous times.Nature,399,342~345.
[7]  Leuenberger M,Siegenthaler U,Langway C C.1992.Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core.Nature,357:488~490.
[8]  Rozanski K L.Araguas R Gonfiantini.1992.Relation between long-term trends of oxygen -18 isotope composition of precipitation and climate.Science,258,981~985.
[9]  Ramskold L,Hou X.1991.New early Cambrian animal and onychophoran affinities of enigmatic metazoans.Nature,351,225~228.
[10]  Wang R L,Scarpitta S C,Zhang S C,Zheng M P.2002.Later Pleistocene/Holocene climate conditions of Qing-Zang (Tibetan) Plateau inferred from stable isotopes of Zabuye Lake.Earth and Planetary Science Letters,203,461~477.
[11]  李贤庆,肖贤明,米敬奎,等.2005.塔里木盆地库车坳陷烃源岩生成甲烷的动力学参数及其应用.地质学报,79(1):133~144.
[12]  王大锐,白玉雷.1999.碳酸盐岩中稳定同位素对古气候的表征.石油勘探与开发,26(5):30~32.
[13]  杨瑞东,朱立军,王世杰,等.2005a.贵州寒武系底部碳同位素负异常的地层学和生物学意义.地质学报,79(2):157~165.
[14]  张水昌,张宝民,边立曾,等.2005.中国海相烃源岩发育控制因素.地学前缘,12(3):39~48.
[15]  Bengtson S.2003.What was life on Earth like before the Cambrian explosion? Nature,423,481~482.Deuser W G,Degens E T.1967.Carbon isotope fractionation in the systemCO2(gas)-CO2(aqueous)-HCO?-?3(aqueous).Nature,215:21~22.
[16]  Jasper J P,Hayes J M.1990.A carbon isotope record of CO2 levels during the late Quaternary.Nature,347,462~464.
[17]  Jenkyns H C,Gale A S,Corfield R M.1994.Carbon-and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance.Geol.Mag.131,1~34.
[18]  Luo Z.2004.A window on early animal evolution.Nature,430,405.
[19]  O\'leary M H.1981.Carbon isotope fractionation in plants.Phytochemistry,20 (4),553~567.
[20]  Shu D G,Luo H L,Conway Morris S,Zhang X L,Hu S X,Chen L,Han J,Zhu M,Li Y,Chen L Z.1999.Lower Cambrian vertebrates from south China Beneath the great divide.Nature,402,42~46.
[21]  Stigman D M,Boyle E A.2000.Glacial/interglacial variations in atmospheric carbon dioxide.Nature,407,859~869.
[22]  Scholle P A,Arthur M A.1980.Carbon isotope fluctuations in Cretaceous pelagic limestones:potential stratigraphic and petroleum exploration tool.Bull.Am.Assoc.Petrol.Geol.,64,67~87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133