全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2009 

福建新生代碱性超基性火山岩地球化学特征及构造意义

, PP. 284-294

Keywords: 新生代,碱性超基性岩,地球化学,大陆裂谷,HIMU,福建

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解福建新生代地幔性质和大地构造背景,对柳城玻基辉橄岩进行系统的年代学和元素地球化学研究。岩石为碱性超基性岩,形成于12.6Ma,富Mg、Fe和贫碱性质,以富集LILE、HFSE、Nb与Ta正异常为特征,强烈富集LREE,相对亏损HREE,(La/Yb)??N?=35.1~36.2,δEu=0.98~1.00,微量元素特征与洋岛玄武岩(OIB)类似。微量元素地球化学特征表明,该岩石是地幔橄榄岩低度部分熔融的产物,成岩过程没有地壳混染;源区地幔具有HIMU性质,由软流圈地幔、脱水洋壳与残留岩石圈地幔混合组成,表现出富集的特征;柳城玻基辉橄岩形成于大陆裂谷环境。与新生代玄武岩进行对比研究表明,中国东南部地幔组成存在多个地幔端元成分。

References

[1]  Tu K, Flowera M F J, Carlsonb R W, Zhang M, Xie G H. 1991. St, Nd, and Pb isotopic compositions of Hainan hasalts(South China): implications for a subcontinental lithosphere Dupal source. Geology, 19(6), 567-569.
[2]  Uto K,Takahashi E,Nakamura E, Kaneoka I. 1994. Geochronology of alkali volcanism in Oki Dogo Island, Southwest Japan: Geochemical evolution of hasalts related to the opening of the Japan Sea. Geochemical Journal, 28, 431-449.
[3]  Weaver B L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett, 104, 381-397.
[4]  Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman. 1 -466.
[5]  Winchester J A and Floyd P A. 1976. Geochemical magma type discrimination. Application to altered and metamorphosed basic igneous rocks. Earth Planet Scin Lett, 28, 459-469.
[6]  Woodhead J D. 1996. Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia) and temporal evolution of the, Cook-Austral hotspot. J of Volcanology and Geothermal Research, 72, 1- 19.
[7]  陈道公 张剑波 Sr.福建龙海明溪两区玄武质火山岩钾一氩年龄和Nd,PB同位素[J].岩石学报,1992,8(4):324-331.
[8]  池际尚.中国东部新生代玄武岩及上地幔研究[M].武汉:中国地质大学出版社,1988.36-37.
[9]  董显扬 李行.中国超镁铁质岩[M].北京:地质出版社,1995..
[10]  黄智龙 颜以彬.云南禄丰鸡街杂岩体中碱性超基性岩地球化学特征及成因探讨[J].地球化学,:.
[11]  姜常义 苏生瑞.北秦岭柞水――太白区段两类激动陆缘型幔源岩浆活动与岩浆过程[J].岩石矿物学杂志,:.
[12]  李献华 周汉文 等.滇西新生代超钾质煌斑岩的元素和Sr―Nd同位素特征及其对岩石圈地幔组成的制约[J].地球化学,:.
[13]  刘? 胡瑞忠 赵军红 冯彩霞 蒋国豪 史丹妮.胶东北部碱性超基性脉岩地球化学特征及环境和成因探讨[J].地质科学,2005,40(1):69-83.
[14]  马昌前 杨坤光 唐仲华 李增田.花岗岩类岩浆动力学一理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社,1994.38-48.
[15]  齐进莫.福建牛头山玄武岩及其深源包体的地球化学研究[J].岩石学报,1985,1(1):75-82.
[16]  石林 解文轰.地幔端元组分的微量元素地球化学研究综述[J].地质地球化学,1998,26(2):77-82.
[17]  王培宗 陈耀安.福建省地壳―上地幔结构及深部构造背景的研究[J].福建地质,:.
[18]  王中刚 于学元.稀土元素地球化学[M].北京:科学出版社,1989.190-246.
[19]  徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程[A].郑永飞主编.化学地球动力学[C].北京:科学出版社,1999.119―167.
[20]  许志琴 赵志兴 杨经绥 袁学诚 姜枚.板块下的构造及地幔动力学[J].地质通报,:.
[21]  鄢全树 石学法 王昆山 卜文瑞 肖龙.南海新生代碱性玄武岩主量、微量元素及Sr-NdPb同位素研究[J].中国科学:D辑,2008,38(1):68-71.
[22]  杨祝良 沈渭洲.浙闽沿海早白垩世玄武岩锶,钕,铅同位素特征――古老富集型地幔的证据[J].地质科学,:.
[23]  赵海玲 狄永军 刘振文 李剑 邓晋福 何恭算 刘清华.东南沿海地区新生代火山作用和地幔柱[J].地质学报,2004,78(6):781-788.
[24]  赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.112-129.
[25]  朱炳泉 王慧芬 等.新生代华夏岩石圈减薄与东亚边缘海盆构造演化的年代学与地球化学制约研究[J].地球化学,:.
[26]  Anders E. Greresse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimical et Cosmochimica Acta, 53, 197-214.
[27]  Cabanis B, Lecolle M. 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de m61ange et/ou de contamination crustale? CRAcadSciSerII, 309:2023-2029.
[28]  Chauvel C, Hofmann A W, Vidal P. 1992. HIMU? EM: the French Polynesian connection. Earth Planet Sei Lett, 110, 99 -119.
[29]  Chung S L, Lee T Y, Lo C H, Wang P L, Chen C Y, Yem N T, Hoa T T, Genyao W. 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone. Geology, 25, 311-314.
[30]  Clive R N and Taylor L A. 1989. A negative Ce anomaly in a peridotite xenolith : Evidence for crustal recycling into the mantle or mantle metasomatism? Geochim. Cosmochim. Acta, 53, 1035 -1040.
[31]  Condie K C. 2001. Mantle plumes and their record in earth history. Cambridge, UK: Cambridge University Press, 1-272.
[32]  Deniel C. 1998. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume lithosphere interactions in the genesis of Grande Comore magmas ( Indian Ocean). Chemical Geology, 144 (3- 4), 281-303.
[33]  Esperaqa S, Crisci G M. 1995. The island of Pantelleria:A case for the development of DMM-HIMU isotopic compositions in a long lived extensional setting. Earth and Planetary Science Letters, 136, 167-182.
[34]  Fekkak, A., Pouclet, A., Ouguir, H., Ouazzani, H., Badra, L. , Gasquet, D. 2001. Geochemistry and geotectonic significance of Early Cryogenian volcanics of Saghro ( Eastern Anti Atlas, Morocco). Geodinamica Acta, 14, 373-385.
[35]  Foley S F. 1992. Petrological and characterization of the source components of potassic magmas: Geochemical and experimental constraints. Lithos, 28(3-6), 187-204.
[36]  Frey F A and Roden M F. 1987. The mantle source for the Hawaiian Islands, constraints from the lavas and ultramafic inclusions, in: Menzies MA and Hawkesworth C J. eds. Mantle Metasomatism. London: Academic Press. 423-464.
[37]  Gilder S A, Gill J, Coe R S, Zhao X, Liu Z, Wang G, Yuan K, Liu W, Kuang G, Wu H. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China, J. Geophys. Res., 101(B7), 16137-16154.
[38]  Green D H. 1971. Composition of Basaltic Magmas as Indicators of Conditions of Origin: Application to Oceanic Volcanism. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences,268, 707-722.
[39]  Ho K S, ChenJ C, LoC H, Zhao H L. 2003. ^40Ar ^39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chemical Geology, 197, 287-318.
[40]  Hofmann A W. 1988. Chemical differentiation of the earth: The relationship between mantle Continental crust and oceanic crust. Earth and Planetary Science Letters, 90, 297-314.
[41]  Ingle S, Weis D, Seoates J, and Frey F A. 2002. Relationship between the early Kerguelen plume and continental flood basahs of the paleo-Eastern Gondwanan margins. Earth Planet. Sci. Lett, 197, 35-50.
[42]  Jolivet, L., K. Tamaki, and M. Fournier. 1994. Japan Sea, opening history and mechanism: A synthesis. J. Geophys. Res. , 99(B11), 22237- 22259.
[43]  Li X H. 2000. Cretaceous magmatism and lithospheric extension in southeast China. Journal of Asian Earth Science, 18, 293 - 305.
[44]  Liu C Q, Masuda A, Xie G H. 1994. Major- and trace-element compositions of Cenozoic basalts in eastern China. Petrogenesis and mantle source. Chemic geology, 14, 19-42.
[45]  Munker C. 2000. The Isotope and Trace Element Budget of the Cambrian Devil River Arc System, New Zealand: Identification of Four Source Components. J. Petrology, 41(6), 759-788.
[46]  Onuma N, Hirano M and Isshiki N. 1981. Sr/Ca-Ba/Ca systematics in four volcanoes of Oshima, Izu. Islands, Japan. Geoehem. J. 15, 315-324.
[47]  Peacock S M, Rushmer T and Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. , 121, 227 -244.
[48]  Qi L, Hu J, Gregoire D C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51, 507-513.
[49]  Sun S-s. McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M Jeds. Magmatism in the Ocean Basins. Geol Soc Spec Publ, (42), 313-345.
[50]  Woolley A R. 2001. Alkaline rocks and carbonatites of the world, PART 3: AFRICA. The Geological Society Publishing House, London, 1-372.
[51]  Zhou X M, Li W X. 2000. Origin of late Mesozoic igneous rocks insoutheastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326, 269- 287.
[52]  Zou H B, Zindler A, Xu X S, Qi Q. 2000. Major, traee element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations and tectonic significance. Chem. Geol., 171, 33-47.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133