全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地质学报  2009 

天然矿石中硫化物的同构造再活化实验研究

, PP. 31-42

Keywords: 流体,再活化,变形变质,块状硫化物矿石

Full-Text   Cite this paper   Add to My Lib

Abstract:

辽宁红透山块状硫化物矿石主要矿物成分为黄铁矿、磁黄铁矿、黄铜矿、闪锌矿、石英、角闪石和黑云母等。将矿石切成圆柱体,用20%NaCl溶液浸泡260h后装入长江500型活塞圆筒式三轴应力试验机,分别在362℃、464℃、556℃和682℃,以及不同的围压和轴压下进行实验,13h后于空气中自然冷却。实验产物中各种矿物发生了强烈的机械变形,黄铁矿和角闪石以脆性破裂为特征,而磁黄铁矿、黄铜矿、闪锌矿、石英和黑云母以塑性变形为主,局部也发生脆性破裂。?实验过程中硫化物发生了强烈的化学再活化,其产物主要有细脉和微晶两种。再活化细脉主要穿插黄铁矿碎斑,而在黄铜矿、磁黄铁矿、闪锌矿和脉石矿物中未曾见到。细脉成分主要为黄铜矿,其次为磁黄铁矿,仅含少量闪锌矿。脉中磁黄铁矿颗粒较大,在超过200μm的长度内光性连续,表明这些脉形成于冷却前的较高温度环境。随实验温度的升高,再活化细脉的数量也随之增加,而且脉中黄铜矿对于磁黄铁矿的比例也加大。再活化微晶可进一步分为两种:一种为分布于同种硫化物碎粒之间或增生于碎粒之上的黄铁矿、磁黄铁矿和黄铜矿微晶;另一种为沿黄铜矿裂隙分布的完全由黄铁矿构成的蠕虫状体。以这两种方式产出的微晶均为实验样品冷却过程中的产物。在556℃和682℃的产物中还出现黄铜矿对黄铁矿的交代反应现象。?本文的实验结果表明,块状硫化物矿石中的硫化物在变形变质过程中可同时以机械的和化学的两种方式发生再活化,并且再活化强度随温度的升高而升高。但是,机械再活化的距离和所造成的各种矿物间的分异都十分有限,只有化学再活化才是造成组分长距离迁移,形成新矿体的重要机制。脆性变形区的张性空间有利于再活化流体的运移和卸载,而韧性变形区则不利。铁硫化物在高温下的再活化产物主要是磁黄铁矿,而低温下则主要为黄铁矿。黄铜矿的再活化能力明显地强于闪锌矿。同生沉积矿床在变形变质过程中的再活化,会在矿床中产生许多后生特征,这一点在研究矿床成因时必须充分注意。

References

[1]  陈柏林.糜棱岩型金矿金元素丰度与构造变形的关系[J].矿床地质,:.
[2]  陈衍景.中国区域成矿研究的若干问题及其与陆-陆碰撞的关系[J].地学前缘,:.
[3]  顾连兴 Ken R.McClay 等.块状硫化物矿石中硫化物的压溶和增生及成矿意义――以加拿大西部矿床为例[J].矿床地质,2001,20(4):323-330.
[4]  顾连兴 汤晓茜 王子江 等.362℃和差异应力条件下硫化物在NaCl溶液中的再活化实验研究[J].岩石学报,2005,21(5):1429-1434.
[5]  华明 徐兆文 饶冰 陆现彩 黄顺生 朱士鹏.黄铁矿――CuCl2盐溶液反应地球化学模拟实验及表面矿物学研究[J].南京大学学报:自然科学版,2004,39:.
[6]  刘连登 朱永正 戴仕炳 见:张贻侠 刘连登主篇.金矿与韧性剪切带及叠加构造[A].见:张贻侠,刘连登主篇.中国前寒武纪矿床和构造[C].地震出版社,1994.39-78.
[7]  孙岩 徐士进 等.断裂构造地球化学导论[M].北京:科学出版社,1998.1-246.
[8]  吴学益.构造地球化学导论[M].贵阳:贵州科技出版社,1998.61-67.
[9]  翟裕生 张胡 等.大型构造与超大型矿床[M].北京:地质出版社,1997.97-125.
[10]  张秋生.中国早前寒武纪地质及成矿作用[M].长春:吉林人民出版社,1984..
[11]  张世柏 吴大清.不同类型黄铁矿对金的吸附实验[J].地球化学,:.
[12]  周怀阳 徐克勤 叶俊 等.广西大厂层控锡石硫化物多金属矿床的地质特征及形成机制探讨[J].南京大学学报:自然科学版,1987,23(3):533-544.
[13]  Bellot J P. 2004. Shear zone-hosted pollymetallic sulfides in the south Limousin area, massif central, France. remohilized sulfide deposits related to Variscan collisional tectonics and amphibolite facies metamorphism. Economic Geology, 991 819-827.
[14]  Berger A, Stunitz H. 1996. Deformation mechanisms and reaction of hornblende: examples from the Bergell tonalite (Central Alps). Tectonophysics, 257: 149-174.
[15]  Bourcier W H, Barnes H L. 1987. Ore solution chemistry: Ⅶ. Stabilities of chloride and bisulphide complexes of zinc to 350℃. Economic Geology, 82 : 1839-1863.
[16]  Chapman L H. 2004. Geology and mineralization styles of the George Fisher Zn-Pb-Ag deposit, Mount Isa, Australia. Economic Geology, 99: 233-255.
[17]  Chen Y J. 1997. Mineralization during collision orogenesis and its control of the distribution of gold deposits in Junggar Mountains, Xinjiang, China. Acta Geologica Sinica, 71: 69-79.
[18]  Chen Y J. 1998. Fluidization model for continental collision in special reference to study ore-forming fluid of gold deposits in the eastern Qinling Mountains, China. Progress in Natural Science, 8 (4): 385-393.
[19]  Clark B R, Kelly W. 1973. Sulfide deformation studies: I Experimental deformation of pyrrhotite and sphalerite to 2000 bars and 500℃. Economic Geology, 68:332-352.
[20]  Cook N J. 1996. Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore Geology Reviews, 11 : 303 - 338.
[21]  Cowper M, Rickard D. 1989. Mechanism of chalcopyrite formation from iron monosulphides in aqueous solutions (<100℃, pH= 2 -4.5). Chemical Geology, 78: 325-341.
[22]  Cox S F. 1987. Flow mechanisms in sulphide minerals. Ore Geology Reviews, 2: 133-171.
[23]  Cox S F, Etheridge M A, Hobbs B E. 1981. The experimental ductile deformation of poly-crystalline and single crystal pyrite. Economic Geology, 76: 2105-2117.
[24]  Crerar D A, Barnes H L. 1976. Ore solution chemistry: V Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200℃ to 350℃. Economic Geology, 71: 772-794.
[25]  Crerar D A, Susak H J, Borcsik M, Schwartz S. 1978. Solubility of the buffer assmblage pyrie + pyrrhotite + magnetite in NaCl solutions from 200℃ to 350℃. Geochimica et Cosmochimica Acta, 42: 1427-1439.
[26]  Cygan G L, Hemley J J, D\\'Angelo W M. 1994. An experimental study of zinc chloride speciation from 300 to 600℃ and 0.5-2.0 kbar in buffered hydrothermal solutions. Geochimica et Cosmochimica Acta, 58 : 4841-4855
[27]  Eisenlorh B N, Groves D, Partington G A. 1989. Crustal-scale shear zone and their significance to Archean gold mineralization in Western Australia. Mineralium Deposita, 24 : 1 -8.
[28]  Fein J B, Hemley J J, D\\'Angelo W M, Komninou A, Sverjensky D A. 1992. Experimental study of iron-chloride complexing in hydrothermal fluids. Geochimica et Cosmoehimiea Aeta, 56: 3179-3190.
[29]  Frost B R, Mavrogenes J A, Tomkins A G. 2002. Partial melting of sulfide ore deposits during medium-and high-grade metamorphism. The Canadian Mineralogist, 40:1- 18.
[30]  Gu L X, McClay K R. 1992. Pyrite deformation in stratiform leadzinc deposits of the Canadian Cordillera. Mineralium Deposita, 27:169- 181.
[31]  Gu L X, MeClay K R. 1994. Pressure solution of sulphides in some massive sulphide deposits of western Canada: its significance to mobilization of ore forming materials. Chinese Journal of Geochemistry, 13: 132-139.
[32]  Gu L X, Vokes F M. 1996. Intergrowth of hexagonal and monoclinic pyrrhotites in some sulphide ores from Norway. Mineralogical Magazine, 60: 304 - 316.
[33]  Vaughan D J, Craig J R. 1997. Sulphide ore mineral stabilities morphologies, and intergrowth textures. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposites, third edition. New York: John Wiley & Sons, 367-434.
[34]  Voegele V, Ando J I, Cordier P, Liebermann R C. 1998. Plastic deformation of silicate garnets Ⅰ. High-pressure experiments. Physics of the Earth and Planetary Interiors, 108: 305-328.
[35]  Vokes F M. 2000. Ores and metamorphism: introduction and historical perspectives. Reviews in EconOmic Geology, 11: 1- 18.
[36]  Vokes F M, Craig J R. 1993. Post-recrystallisation mobilisation phenomena in metamorphosed stratabmmd sulphide ores. Mineralogical Magazine, 57: 19-28.
[37]  Wagner T, Cook N J. 1998. Sphalerite r emobilization during multistage hydrothermal mineralization events: examples from siderite-Pb-Zn-Cu-Sb veins, Rheinisch es Schiefergebirge, Germany. Mineralogy and Petrology, 63:223-241.
[38]  Wagner T, Jonsson E, Boyce A J. 2005. Metamorphic ore remobilization in the district, Bergslagen, Sweden: constraints from mineralogical and small-scale sulphur isotope studies. Mineralium Deposita, 40: 100-114.
[39]  Widler A M, Seward T M. 2002. The adsorption of gold (I) hydrosulphide complexes by iron sulphide surfaces. Geochimica et Cosmochimica Acta, 66: 383-402.
[40]  Wood A S, Crerar D A, Borcsik M P. 1987. Solubility of the assemblage pyrite-pyrrhotite-magnetite-galena-gold- stibnitebismuthinite-argentite-molybdenite in H2O-NaCl-CO2 solutions from 200-350℃. Economic Geology, 82: 1864-1887.
[41]  Xiao Z F, Gammons C H, Williams-Jones A E. 1998. Experimental study of copper (I) chloride complexing in hydrothermal solutions at 40 to 300℃ and saturated water vapour pressure. Geochimica et Cosraoschirnica Acta, 62:2949-2964.
[42]  Zhou J Y, Cui B F, Lu Y. 1995. On the mineralization controlled by tectonodynamic force. Resource Geology, 45: 331-339.
[43]  Zhou T F, Yuan F, Yue S C, Zhao Y. 2000. Two series of coppergold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Science in China (Series D-Earth Sciences), 43 (Suppl.) : 208-218.
[44]  Gu L X, Hu W X, He J X, Ni P, Xu K Q. 2000. Regional variations in ore composition and fluid features of massive sulphide deposits in South China: implications for genetic modeling. Episodes, 23:110-118.
[45]  Gu L X, Xiao X J, Ni P, Wu C Z. 2001. Pyrrhotite textures and their genetic implications in the Hongtoushan Massive sulphide deposit, Liaoning Province, China. Chinese Journal of Geochemistry, 20: 210-217.
[46]  Gu L X, Zheng Y C, Tang X Q, Fernando D P, Wu C Z, Tian Z M, Lu J J, Ni P, Li X, Yang F T, Wang X W. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan, N.E. China. Ore Geology Reviews, 30:1-29.
[47]  Gu L X, Khin Z, Hu W X, Zhang K J, Ni P, He J X, Xu Y T, Lu J J, Lin C M. Distinctive features of Late Palaezoic massive sulphide deposits in South China. Ore Geology Reviews, in press.
[48]  Hemley J J, Cygan G L, D\\'Angelo W M. 1986. Effect of pressure on ore mineral solubilities under hydrothermal conditions. Geology, 14:377-379.
[49]  Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita, 34:770-783.
[50]  Jean G E, Bancroft G M. 1985. An XPS and SEM study of gold deposition at low temperatures on sulphide mineral surfaces:Concentration of gold by absorption/reduction. Geoehimica et Cosmochimica Acta, 49: 979-987.
[51]  Ji S C, Martignole J. 1994. Ductility of garnet as an indicator of extremely high temperature deformation. Journal of Structural Geology, 16: 985-996.
[52]  Kelly W C, Clark B R. 1975. Sulphide deformation studies:Ⅲ. Experimental deformation of chaleopyrite to 2000 bars and 500℃. Economic Geology, 70: 431-453.
[53]  Kleinschrodt R, McGrew A. 2002. Garnet plasticity in the lower continental crust-implications for deformation mechanisms based on microstructures and SEM-electron channelling pattern analysis. Journal of Structural Geology, 22: 795-809.
[54]  Large R R. 1992. Australian volcanic-hosted massive sulphide deposits: features, styles, and genetic models. Economic Geology, 87:471-510.
[55]  Large R R, Bull S W, Cooke D R, Mcgoldrick P J. 1998. A genetic model for the HYC deposit, Australia: based on regional sedimentolugy, geochemistry, and sulfide-sediment relationships. Economic Geology, 93:1315-1368
[56]  Larocque A C L, Hodgson C J. 1993. Gold distribution in the Mobrun voleanic-assoeiated massive sulfide deposit, Noranda, Quebec:a preliminary evaluation of the role of metamorphic remobilization. Economic Geology, 88:1443-1459.
[57]  Li A M. 1997. Ductile deformation of biotite in foliated cataclasite, Iida-Matsukawa fault, central Japan. Journal of Asian Earth Sciences, 15:407-411.
[58]  Maddox L M, Bancroft G M, Scaini M J, Lorimer J W. 1998. Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist, 83: 240-1245.
[59]  Marshall B, Gilligan L B. 1987. An introduction to remobilization: information from ore-body geometry and experimental considerations. Ore Geology Reviews, 2:87-131.
[60]  Marshall B, Gilligan L B. 1993. Remobilization, syn-tectonic processes and massive sulphide deposits. Ore Geology Reviews, 8:39-64.
[61]  Marshall B, Vokes F M, Larocque A C L. 2000a. Regional metamorphic remobilization: upgrading and formation o- ore deposits. Reviews in Economic Geology, 11: 19-38.
[62]  Marshall B, Giles A D, Hagemann S G. 2000b. Fluid inclusions in metamorphosed and synmetamorphic ( including metamorphogenic) base and precious metal deposits: Indicators of ore forming conditions and/or ore-modifying histories? Reviews in Economic Geology, 11: 119-148.
[63]  Mookherjee. 1976. Ores and metamorphism: temporal and genetic relation ships. In: Wolf KH ed. , Handbook of Strata-Bound and Stratiform Ore Deposits, 4. Amsterdamm: Elsevier, 203-260.
[64]  Murowchick J B, Barnes H L. 1987. Effects of temperature and supersaturation on pyrite morphology. American Mineralogist, 73: 1241-1250.
[65]  Passchier C W, Trouw R A J. 2005. Micro-tectonics. Second edition. Springer, 1-366.
[66]  Perkins W G. 1998. Timing of formation of Proterozoic stratiform fine--grained pyrite: post-diagenetic cleavage replacement at Mount Isa? Economic Geology, 93: 1153-1164.
[67]  Plimer I R. 1987. Remobilization in highgrade metamorphic environments, Ore Geology Reviews, 2: 231-245.
[68]  Ramdohr P. 1980. The Ore Minerals and Their Intergrowths. Second edition, English Translation. Oxford: Pergamon Press, 1-1205.
[69]  Rickard D, Cowper M. 1994. Kinetics and mechanism of chalcopyrite formation from Fe(Ⅱ) from disulfide in aqueous solution (<200℃). Geochimica et Cosmochimica Acta, 58: 3795-3802.
[70]  Sack R O. 2006. Thermochemistry of sulfide mineral solutions. Reviews in Mineralogy - Geochemistry, 61 : 265-364.
[71]  Schoonen M A A, Barnes H L. ]991a. Reactions forming pyrite and marcasite from solution: Ⅰ. Nucleation of FeS2 Below 100℃. Geoehimica et Cosmochimica Acta, 55 : 1495-1504.
[72]  Schoonen M A A, Barnes H L. 1991b. Reactions forming pyrite and marcasite from solution: Ⅱ. via FeS precursors Below 100℃. Geochimica et Cosmochimica Acta, 55: 1505-1514.
[73]  Seward T M. 1984. The transport and deposition of gold in hydrothermal systems. In: Foster R P, ed. GOLD\\'82: The Geology, Geochemistry and Genesis of Gold Deposits. Rotterdam: A.A. Balkema Press, 165-181.
[74]  Seward T M, Barnes H L. 1997. Metal transport by hydrothermal ore fluids. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposites, third edition. New York: John Wiley & Sons, 435-486.
[75]  Simon G, Kesler S E, Chryssoulis S L. 1999. Geochemistry and textures of gold-bearing arsenianpyrite, Twin Creeks Carlintype gold deposit, Nevada. Implications for gold deposition. Economic Geology, 94: 405-422.
[76]  Skinner B, Johnson C. 1987, Evidence for movement of ore materials during high-grade metamorphism. ()re Geology Reviews, 2:191-204.
[77]  Stevens G, Prinz S, Rozendaal A. 2005. Partial melting of the assemblage sphalerite + galena + pyrrhotite + chalcopyrite + sulfur: implications for high-grade metamorphosed massive sulfide deposits. Economic Geology, 100:781-786.
[78]  Tulllis J, Yund R A. 1977. Experimentai deformation of dry Westerly granite. Journal of Geophysics Research, 82: 5707-5718.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133