全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Probing Local Environments by Time-Resolved Stimulated Emission Spectroscopy

DOI: 10.1155/2012/271435

Full-Text   Cite this paper   Add to My Lib

Abstract:

Time-resolved stimulated emission spectroscopy was employed to probe the local environment of DASPMI (4-(4-(dimethylamino)styryl)-N-methyl-pyridinium iodide) in binary solvents of different viscosity and in a sol-gel matrix. DASPMI is one of the molecules of choice to probe local environments, and the dependence of its fluorescence emission decay on viscosity has been previously used for this purpose in biological samples, solid matrices as well as in solution. The results presented in this paper show that time-resolved stimulated emission of DASPMI is a suitable means to probe the viscosity of local environments. Having the advantage of a higher time resolution, stimulated emission can provide information that is complementary to that obtained from fluorescence decay measurements, making it feasible to probe systems with lower viscosity. 1. Introduction Fluorescent stilbenoid dyes are among the classes of chromophores most widely used in staining biological samples to be investigated by fluorescence microscopy methods [1–4]. Stilbenoid dyes show complex excited state dynamics, such as isomerisation processes, which are often accompanied by the emergence of charge transfer states [2, 5–9]. An important consequence of these dynamics is that their fluorescence properties are particularly sensitive to the local environment, which not only increases the contrast between sample features, but also delivers specific information on local properties. In the particular case of DASPMI (4-(4-(dimethylamino)styryl)-N-methyl-pyridinium iodide), solvent polarity as well as viscosity can influence the fluorescence properties of this dye. To a good approximation, the peak of the emission spectrum can be used as an indicator for the polarity of its surroundings, while the fluorescence lifetime varies with the viscosity of the local environment [8, 9]. It has been previously demonstrated that the fast molecular dynamics processes in DASPMI, such as the rearrangements of the dye upon transitions to intramolecular charge transfer states, are sensitive to the local viscosity [2, 10, 11]. In particular, the fluorescence lifetime of DASPMI is quite sensitive to the local viscosity, making fluorescence lifetime measurements a method of choice to probe the microheterogeneous environments in confining media such as sol-gel based or biological systems [10, 12, 13]. Previous studies have shown that when DASPMI is incorporated in sol-gel-derived media, the lifetime of the fastest decay component can increase up to a hundred fold while the lifetime of the longer decay components tend

References

[1]  R. Ramadass and J. Bereiter-Hahn, “Picosecond fluorescence decay microscopy of DASPMI stained mitochondria in living cells,” European Journal Of Cell Biology, vol. 84, pp. 107–108, 2005.
[2]  R. Ramadass and J. Bereiter-Hahn, “Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” Journal of Physical Chemistry B, vol. 111, no. 26, pp. 7681–7690, 2007.
[3]  R. Ramadass and J. Bereiter-Hahn, “How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells,” Biophysical Journal, vol. 95, no. 8, pp. 4068–4076, 2008.
[4]  R. Ramadass and J. Bereiter-Hahn, “Excited state photophysical properties of DASPMI in solvents and living cells,” Biophysical Journal, p. 326A, 2007.
[5]  D. Bingemann and N. P. Ernsting, “Femtosecond solvation dynamics determining the band shape of stimulated emission from a polar styryl dye,” The Journal of Chemical Physics, vol. 102, no. 7, pp. 2691–2700, 1995.
[6]  M. Dekhtyar and W. Rettig, “Charge-transfer transitions in twisted stilbenoids: interchangeable features and generic distinctions of single- and double-bond twists,” Journal of Physical Chemistry A, vol. 111, no. 11, pp. 2035–2039, 2007.
[7]  W. Rettig, B. Strehmel, and W. Majenz, “The excited states of stilbene and stilbenoid donor-acceptor dye systems. A theoretical study,” Chemical Physics, vol. 173, no. 3, pp. 525–537, 1993.
[8]  M. Sczepan, W. Rettig, A. I. Tolmachev, and V. V. Kurdyukov, “The role of internal twisting in the photophysics of stilbazolium dyes,” Physical Chemistry Chemical Physics, vol. 3, no. 17, pp. 3555–3561, 2001.
[9]  M. J. van der Meer, H. Zhang, W. Rettig, and M. Glasbeek, “Femto- and picosecond fluorescence studies of solvation and non-radiative deactivation of ionic styryl dyes in liquid solution,” Chemical Physics Letters, vol. 320, no. 5-6, pp. 673–680, 2000.
[10]  A. Rei, G. Hungerford, and M. I. C. Ferreira, “Probing local effects in silica sol-gel media by fluorescence spectroscopy of p-DASPMI,” Journal of Physical Chemistry B, vol. 112, no. 29, pp. 8832–8839, 2008.
[11]  B. Strehmel, H. Seifeit, and W. Rettig, “Photophysical properties of fluorescence probes. 2. A model of multiple fluorescence for stilbazolium dyes studied by global analysis and quantum chemical calculation,” Journal of Physical Chemistry B, vol. 101, no. 12, pp. 2232–2243, 1997.
[12]  D. Jó?wik, E. Miller, B. Wandelt, and S. Wysocki, “The styrylpyridine dye for the silane sol-gel transition studies by time-dependent fluorescence,” Spectrochimica Acta A, vol. 64, no. 5, pp. 1125–1132, 2006.
[13]  G. Hungerford, M. R. Pereira, J. A. Ferreira et al., “Probing Si and Ti based sol-gel matrices by fluorescence techniques,” Journal of Fluorescence, vol. 12, no. 3-4, pp. 397–417, 2002.
[14]  G. Hungerford, A. Rei, M. I. C. Ferreira, K. Suhling, and C. Tregidgo, “Diffusion in a sol-gel-derived medium with a view toward biosensor applications,” Journal of Physical Chemistry B, vol. 111, no. 13, pp. 3558–3562, 2007.
[15]  D. Avnir, O. Lev, and J. Livage, “Recent bio-applications of sol-gel materials,” Journal of Materials Chemistry, vol. 16, no. 11, pp. 1013–1030, 2006.
[16]  S. Hudson, J. Cooney, and E. Magner, “Proteins in mesoporous silicates,” Angewandte Chemie, vol. 47, no. 45, pp. 8582–8594, 2008.
[17]  T. Besanger, Y. Zhang, and J. D. Brennan, “Characterization of fluorescent phospholipid liposomes entrapped in sol-gel derived silica,” Journal of Physical Chemistry B, vol. 106, no. 41, pp. 10535–10542, 2002.
[18]  W. Jin and J. D. Brennan, “Properties and applications of proteins encapsulated within sol-gel derived materials,” Analytica Chimica Acta, vol. 461, no. 1, pp. 1–36, 2002.
[19]  H. Dislich, “Sol-Gel 1984 → 2004 (?),” Journal of Non-Crystalline Solids, vol. 73, no. 1–3, pp. 599–612, 1985.
[20]  S. Sakka, “Sol-gel synthesis of glasses: present and future,” American Ceramic Society Bulletin, vol. 64, no. 11, pp. 1463–1466, 1985.
[21]  A. C. Pierre, “The sol-gel encapsulation of enzymes,” Biocatalysis and Biotransformation, vol. 22, no. 3, pp. 145–170, 2004.
[22]  G. Hungerford, A. Rei, M. I. C. Ferreira, C. Tregidgo, and K. Suhling, “Molecular diffusion within sol-gel derived matrices viewed via fluorescence recovery after photobleaching,” Photochemical & Photobiological Sciences, vol. 6, no. 8, pp. 825–828, 2007.
[23]  A. M. Jonkman, P. van der Meulen, H. Zhang, and M. Glasbeek, “Subpicosecond solvation relaxation of DASPI in polar liquids,” Chemical Physics Letters, vol. 256, no. 1-2, pp. 21–26, 1996.
[24]  H. Wang, H. Zhang, W. Rettig, A. I. Tolmachev, and M. Glasbeek, “Femtosecond dynamics of the S2 and S1 fluorescence of ionic styryl dyes in polar solvents,” Physical Chemistry Chemical Physics, vol. 6, no. 13, pp. 3437–3446, 2004.
[25]  G. Hungerford, A. Rei, and M. I. C. Ferreira, “Use of fluorescence to monitor the incorporation of horseradish peroxidase into a sol-gel derived medium,” Biophysical Chemistry, vol. 120, no. 2, pp. 81–86, 2006.
[26]  K. K. Flora and J. D. Brennan, “Characterization of the microenvironments of PRODAN entrapped in tetraethyl orthosilicate derived glasses,” Journal of Physical Chemistry B, vol. 105, no. 48, pp. 12003–12010, 2001.
[27]  P. van der Meulen, H. Zhang, A. M. Jonkman, and M. Glasbeek, “Subpicosecond solvation relaxation of 4-(dicyanomethylene)-2-methyl-6-(p-(dimethylamino)styryl)-4H-pyran in polar liquids,” Journal of Physical Chemistry, vol. 100, no. 13, pp. 5367–5373, 1996.
[28]  R. C. Weast, in Handbook Of Chemistry And Physics, CRC, Boca Raton, Fla, USA, 57th edition, 2000.
[29]  G. Hungerford, A. Allison, D. McLoskey, M. K. Kuimova, G. Yahioglu, and K. Suhling, “Monitoring Sol-to-Gel transitions via fluorescence lifetime determination using viscosity sensitive fluorescent probes,” Journal of Physical Chemistry B, vol. 113, no. 35, pp. 12067–12074, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133