Laser-spectrometric methods to derive absolute and traceable carbon monoxide (CO) amount fractions in exhaled human breath could be of advantage for early disease detection as well as for treatment monitoring. As proof-of-principle laboratory experiment, we employed intra-pulse and continuous wave (cw) quantum cascade laser spectroscopy (QCLAS), both at 4.6?μm. Additional experiments were carried out applying cw cavity ring-down spectroscopy (CRDS) with a CO sideband laser and a QCL. We emphasize metrological data quality objectives, thatis, traceability and uncertainty, which could serve as essential benefits to exhaled breath measurements. The results were evaluated and compared on a 100?μmol/mol CO level using the two QCLAS spectrometers, and the cw CO sideband laser CRDS setup. The relative standard uncertainties of the pulsed and the cw QCLAS CO amount fraction results were ±4.8 and ±2.8%, respectively, that from the CO sideband laser CRDS was ±2.7%. Sensitivities down to a 3 nmol/mol CO level were finally demonstrated and quantified by means of cw CRDS equipped with a QCL yielding standard uncertainties of about ±2.5 that are exclusively limited by the available line strength figure quality. With this study we demonstrate the achieved comparability of CO quantifications, adhering metrological principles. 1. Introduction The last years exhibited the development of new laser sources such as quantum cascade lasers [1] operating in the mid infrared where the fundamental bands of most infrared active molecules are located. In breath analysis for instance, mid infrared light sources have been used to measure the amount fraction of biomarkers such as acetone or carbon monoxide (CO) found in exhaled human breath using different laser spectroscopic techniques with detection limits down to the pmol/mol level [2]. Carbon monoxide, which we focus on in this work, is in air a pollutant resulting from the incomplete burning of carbon-containing fuels. As a process product it can reach quite large concentration levels of several tens of μmol/mol, expressed as amount fractions. CO in breath of smokers could be found in a range of up to a few μmol/mol, which is well above atmospheric levels (typically 100?nmol/mol). Patients suffering from anaemias, oxidative stress, and respiratory infections have been found with abnormal levels of carbon monoxide. Therefore, CO is discussed as being a biomarker for these diseases. However, because of the low μmol/mol level of CO reported to be present in exhaled breath and because of the presence of several molecules at the same
References
[1]
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science, vol. 264, no. 5158, pp. 553–556, 1994.
[2]
C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors, vol. 9, no. 10, pp. 8230–8262, 2009.
[3]
M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” Journal of Breath Research, vol. 1, no. 1, p. 014001, 2007.
[4]
J. A. Nwaboh, T. Desbois, D. Romanini, D. Schiel, and O. Werhahn, “Molecular laser spectroscopy as a tool for gas analysis applications,” International Journal of Spectroscopy, vol. 2011, Article ID 568913, 12 pages, 2011.
[5]
J. Morville, S. Kassi, M. Chenevier, and D. Romanini, “Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking,” Applied Physics B, vol. 80, no. 8, pp. 1027–1038, 2005.
[6]
P. Ortwein, W. Woiwode, S. Fleck et al., “Absolute diode laser-based in situ detection of HCl in gasification processes,” Experiments in Fluids, vol. 49, no. 4, pp. 961–968, 2010.
[7]
K. Heinrich, T. Fritsch, P. Hering, and M. Mürtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath,” Applied Physics B, vol. 95, no. 2, pp. 281–286, 2009.
[8]
K. Wunderle, S. Wagner, I. Pasti et al., “Distributed feedback diode laser spectrometer at 2.7 μ for sensitive, spatially resolved H2O vapor detection,” Applied Optics, vol. 48, no. 4, pp. B172–B182, 2009.
[9]
J. A. Nwaboh, O. Werhahn, and D. Schiel, “Measurement of CO amount fractions using a pulsed quantum-cascade laser operated in the intrapulse mode,” Applied Physics B, vol. 103, no. 4, pp. 947–957, 2011.
[10]
S. Wright, G. Duxbury, and N. Langford, “A compact quantum-cascade laser based spectrometer for monitoring the concentrations of methane and nitrous oxide in the troposphere,” Applied Physics B, vol. 85, no. 2-3, pp. 243–249, 2006.
[11]
S. M. Cristescu, S. T. Persijn, S. Te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Applied Physics B, vol. 92, no. 3, pp. 343–349, 2008.
[12]
M. Sowa, M. Mürtz, and P. Hering, “Mid-infrared laser spectroscopy for online analysis of exhaled CO,” Journal of Breath Research, vol. 4, no. 4, Article ID 47101, 2010.
[13]
EMRP, “T2.J02–Breath Analysis, Joint Research Projects funded under iMERA-plus,” 2010, http://www.euramet.org/index.php?id=imera-plus.
[14]
O. Werhahn and J. C. Petersen, Eds., “TILSAM technical protocol V1_2010-09-29,” http://www.euramet.org/fileadmin/docs/projects/934_METCHEM_Interim_Report.pdf.
[15]
JCGM 100, “Evaluation of measurement data—Guide to the expression of uncertainty in measurement, GUM 1995 with minor corrections,” ISO IEC Guide 98-3, 2008, http://www.bipm.org/en/publications/guides/gum.html.
[16]
J. Manne, A. Lim, W. J?ger, and J. Tulip, “Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene,” Applied Optics, vol. 49, no. 28, pp. 5302–5308, 2010.
[17]
B. E. Brumfield, J. T. Stewart, S. L. Widicus Weaver et al., “A quantum cascade laser cw cavity ringdown spectrometer coupled to a supersonic expansion source,” Review of Scientific Instruments, vol. 81, no. 6, Article ID 063102, 2010.
[18]
L. S. Rothman, I. E. Gordon, A. Barbe et al., “The HITRAN 2008 molecular spectroscopic database,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 110, no. 9-10, pp. 533–572, 2009.
[19]
E. Normand, M. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Optics Letters, vol. 28, no. 1, pp. 16–18, 2003.
[20]
M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, and D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers,” Journal of the Optical Society of America B, vol. 20, no. 8, pp. 1761–1768, 2003.
[21]
T. Beyer, M. Braun, and A. Lambrecht, “Fast gas spectroscopy using pulsed quantum cascade lasers,” Journal of Applied Physics, vol. 93, no. 6, pp. 3158–3160, 2003.
[22]
B. Grouiez, B. Parvitte, L. Joly, D. Courtois, and V. Zeninari, “Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm,” Applied Physics B, vol. 90, no. 2, pp. 177–186, 2008.
[23]
J. Manne, W. J?ger, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques,” Applied Physics B, vol. 94, no. 2, pp. 337–344, 2009.
[24]
C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Applied Physics Letters, vol. 82, no. 11, pp. 1664–1666, 2003.
[25]
Instituto Portugues da qualidade (IPQ), http://www.ipq.pt/backhtmlfiles/ipq_mei.htm.
[26]
G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Rapid passage induced population transfer and coherences in the 8 micron spectrum of nitrous oxide,” Molecular Physics, vol. 105, no. 5–7, pp. 741–754, 2007.
[27]
S. Welzel, New enhanced sensitivity infrared laser spectroscopy techniques applied to reactive plasmas and trace gas detection, Ph.D. thesis, Ernst-Moritz-Arndt Universit?t, Greifswald, Germany, 2009.
[28]
Origin 7.5 SR6, “OriginLab cooperation,” Northampton, Mass, USA, 2006, http://www.OriginLab.com.
GUM Workbench Pro, “Version 2.4.1.388, 1996–2010 Metrodata GmbH, Im Winkel 15–1,” Weil am Rhein, Germany, http://www.metrodata.de.
[31]
H. Teichert, T. Fernholz, and V. Ebert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Applied Optics, vol. 42, no. 12, pp. 2043–2051, 2003.
[32]
S. Persijn, F. Harren, and A. Van Der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Applied Physics B, vol. 100, no. 2, pp. 383–390, 2010.
[33]
R. D. van Zee and J. Patrick Looney, “Cavity-enhanced spectroscopies,” in Experimental Methods in the Physical Sciences, vol. 40, Academic Press, Amsterdam, The Netherlands, 2002.
[34]
P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” The Journal of Chemical Physics, vol. 102, no. 7, pp. 2708–2717, 1995.
[35]
J. Manne, O. Sukhorukov, W. J?ger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Applied Optics, vol. 45, no. 36, pp. 9230–9237, 2006.
[36]
D. Halmer, G. Von Basum, P. Hering, and M. Mürtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide,” Optics Letters, vol. 30, no. 17, pp. 2314–2316, 2005.
[37]
G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy, Wiley-Blackwell, 2009.
[38]
“BLeast software according to recommendations given in ISO6143 on generalized linear regressions in gas analysis, developed by the BAM, Bundesanstalt für Materialforschung und -prüfung,” Berlin, Germany, http://www.bam.de.
[39]
VSL B.V., Dutch Metrology Institute, Delft, The Netherlands, http://www.vsl.nl/.
[40]
A. A. Kosterev, A. L. Malinovsky, F. K. Tittel et al., “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser,” Applied Optics, vol. 40, no. 30, pp. 5522–5529, 2001.
[41]
B. A. Paldus, C. C. Harb, T. G. Spence et al., “Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers,” Optics Letters, vol. 25, no. 9, pp. 666–668, 2000.
[42]
ISO/IEC 17025, “General requirements for the competence of testing and calibration laboratories,” http://www.iso.org/iso/catalogue_detail.htm?csnumber=39883.