全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Resonance-Enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances

DOI: 10.1155/2012/158715

Full-Text   Cite this paper   Add to My Lib

Abstract:

Resonance-enhanced Raman spectroscopy has been used to perform standoff measurements on nitromethane (NM), 2,4-DNT, and 2,4,6-TNT in vapor phase. The Raman cross sections for NM, DNT, and TNT in vapor phase have been measured in the wavelength range 210–300?nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The results show that the signal is enhanced up to 250,000 times for 2,4-DNT and up to 60,000 times for 2,4,6-TNT compared to the nonresonant signal at 532?nm. Realistic outdoor measurements on NM in vapor phase at 13?m distance were also performed, which indicate a potential for resonance Raman spectroscopy as a standoff technique for detection of vapor phase explosives. In addition, the Raman spectra of acetone, ethanol, and methanol were measured at the same wavelengths, and their influence on the spectrum from NM was investigated. 1. Introduction Improvised explosive devices (IEDs) are a common and a growing threat to the civilian society as well as to peace-keeping operations. Today, detection and identification of explosive charges and IEDs in real environments (indoors or outdoors) is a very challenging task and can in many cases also be a very hazardous operation. IEDs are in a way unique compared to regular ordnances, since the IED manufacturer has to improvise the design and use whatever materials are available. For this reason, the threat varies over time and in different parts of the world; it also evolves as countermeasures are taken. The diverse and varying nature of IEDs poses great challenges to the methods for their detection since they can contain any explosive which is available; this means commercial, military, or homemade explosives (HMEs). An overview of HME properties is given by Menning and Ostmark [1]. From the perspective of the user of the detection equipment, much would be gained if detection and identification could be reliably performed from a safe distance. This drives the research of possible standoff detection methods, where the developed methods will need to be both sensitive and selective in order to detect an explosive material in vapor phase and at low concentrations, or as trace amounts of particles on a surface, among an unknown number and composition of possible interfering substances. In addition, the method should be applicable at a distance of some tenths to a few hundreds of meters. Techniques that are anticipated to fulfill these requirements are laser-based spectroscopy methods. A number of different laser-based methods for

References

[1]  D. Menning and H. Ostmark, “Detection of liquid and homemade explosives: what do we need to know about their properties?” in Proceedings of the NATO Advanced Research Workshop on Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism, pp. 55–70, St Petersburg, Russia, 2007.
[2]  S. Wallin, A. Pettersson, H. ?stmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 259–274, 2009.
[3]  J. L. Gottfried, F. C. de Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 283–300, 2009.
[4]  N. R. Butt, M. Nilsson, A. Jakobsson et al., “Classification of raman spectra to detect hidden explosives,” IEEE Geoscience and Remote Sensing Letters, vol. 8, pp. 517–521, 2010.
[5]  S. K. Sharma, A. K. Misra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochimica Acta A, vol. 61, no. 10, pp. 2404–2412, 2005.
[6]  J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Applied Spectroscopy, vol. 59, no. 6, pp. 769–775, 2005.
[7]  A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. ?stmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55?m distance,” Propellants, Explosives, Pyrotechnics, vol. 34, no. 4, pp. 297–306, 2009.
[8]  A. Pettersson, S. Wallin, H. ?stmark, et al., “Explosives stand-off detection using Raman spectroscopy: from bulk towards trace detection,” in Proceedings of the Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, R. S. Harmon, J. H. Holloway Jr., and J. T. Broach, Eds., vol. 7664, April 2010.
[9]  M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” Tech. Rep., Swedish Defence Research Agency, Stockholm, Sweden, 2009.
[10]  H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” Journal of Forensic Sciences, vol. 43, no. 3, pp. 509–513, 1998.
[11]  M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Optical Materials, vol. 30, no. 11, pp. 1739–1746, 2008.
[12]  N. A. Szymanski, Raman Spectroscopy: Theory and Practice, Plenum, New York, NY, USA, 1967.
[13]  L. Nagli, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Optical Materials, vol. 30, no. 11, pp. 1747–1754, 2008.
[14]  D. D. Tuschel, A. V. Mikhonin, B. E. Lemoff, and S. A. Asher, “Deep ultraviolet resonance raman excitation enables explosives detection,” Applied Spectroscopy, vol. 64, no. 4, pp. 425–432, 2010.
[15]  H. ?stmark, et al., “Vapor pressure of explosives: a critical review,” Propellants, Explosives, Pyrotechnics. In press.
[16]  R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” Journal of the Chemical Society, Faraday Transactions I, vol. 74, pp. 1339–1345, 1978.
[17]  J. P. McCullough, D. W. Scott, R. E. Pennington, I. A. Hossenlopp, and G. Waddington, “Nitromethane: the vapor heat capacity, heat of vaporization, vapor pressure and gas imperfection; the chemical thermodynamic properties from 0 to 1500°K,” Journal of the American Chemical Society, vol. 76, no. 19, pp. 4791–4796, 1954.
[18]  P. A. Pella, “Measurement of vapor pressures of TNT, 2,4-DNT 2,6-DNT, and EGDN,” The Journal of Chemical Thermodynamics, vol. 9, no. 4, pp. 301–305, 1977.
[19]  G. Edwards, “The vapor pressure of 2-4-6-trinitrotoluene,” Transactions of the Faraday Society, vol. 46, pp. 423–427, 1950.
[20]  H. Inaba and T. Kobayasi, “Laser-Raman radar—Laser-Raman scattering methods for remote detection and analysis of atmospheric pollution,” Optical and Quantum Electronics, vol. 4, no. 2, pp. 101–123, 1972.
[21]  M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 03, Revision C.02, Gaussian, Wallingford, Conn, USA, 2004.
[22]  M. Gaft and L. Nagli, “Standoff laser based spectroscopy for explosives detection,” in Electro-Optical Remote Sensing, Detection, and Photonic Technologies and Their Applications, vol. 6739 of Proceedings of SPIE, p. 673903, Florence, Italy, September 2007.
[23]  D. Ambrose, C. H. S. Sprake, and R. Townsend, “Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone,” The Journal of Chemical Thermodynamics, vol. 6, no. 7, pp. 693–700, 1974.
[24]  C. B. Kretschmer and R. Wiebe, “Liquid-vapor equilibrium of ethanol-toluene solutions,” Journal of the American Chemical Society, vol. 71, no. 5, pp. 1793–1797, 1949.
[25]  D. Ambrose and C. H. S. Sprake, “Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols,” The Journal of Chemical Thermodynamics, vol. 2, no. 5, pp. 631–645, 1970.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133