Vaginal infections (vaginosis) globally affect more than 15% of the female population of reproductive age. However, diagnosis of vaginosis and differentiating between the three common types: bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and trichomoniasis are challenging. Elevated levels of the biogenic amines, trimethylamine (TMA), putrescine, and cadaverine have been found in vaginal discharge fluid of women with vaginosis. Ion mobility spectrometry (IMS) is particularly suitable for measurement of amines even in complex biological matrices due to their high proton affinity and has been shown to be suitable for the diagnosis of vaginal infections. Recent developments that have increased the accuracy of the technique for diagnosis of BV and simplified sample introduction are described here. 1. Introduction There are three common types of vaginal infections (vaginosis): bacterial vaginosis (BV), vulvovaginal candidiasis (VVC or yeast infection), and trichomoniasis that affect women worldwide [1]. According to many studies the prevalence of these infections varies considerably from country to country, and between different populations within each country but according to a conservative estimate more than 15% of women of reproductive age are affected by one or more of these infections at any given time [2]. Symptoms may include copious discharge of vaginal fluid, fishy odor, pain, itching, or burning. However, in many cases the symptoms are not noticed, that is, an asymptomatic infection [1]. The cause of BV is generally attributed to an overgrowth of anaerobic microorganisms and it has been associated with several types like Gardnerella, Mobiluncus, Bacteroides, Mycoplasma hominis, Ureaplasma urealyticum, and so forth. These microorganisms may normally be present in vaginal discharge fluid, but their growth is inhibited by Lactobacilli that maintain a low pH and produce hydrogen peroxide. Vulvovaginal candidiasis is caused by some types of candida (fungi) while trichomoniasis is caused by trichomonads that are parasites. When the balance between the pathological microorganisms and the Lactobacilli is disturbed a vaginal infection may erupt. This could be due to the use of antibiotic medication that deleteriously affects the Lactobacilli and thus allows the fungi to thrive leading to a yeast infection. An infection can also result from practices like frequent douching or unhygienic habits, allergy, or even sensitivity to semen. Correctly diagnosing the vaginal infection could be complicated due to the similarity of symptoms of the three common
E. H. Koumans, M. Sternberg, C. Bruce et al., “The prevalence of bacterial vaginosis in the United States, 2001–2004; associations with symptoms, sexual behaviors, and reproductive health,” Sexually Transmitted Diseases, vol. 34, no. 11, pp. 864–869, 2007.
[3]
R. Amsel, P. A. Totten, and C. A. Spiegel, “Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations,” American Journal of Medicine, vol. 74, no. 1, pp. 14–22, 1983.
[4]
R. P. Nugent, M. A. Krohn, and S. L. Hillier, “Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation,” Journal of Clinical Microbiology, vol. 29, no. 2, pp. 297–301, 1991.
[5]
K. Chaijareenont, K. Sirimai, D. Boriboonhirunsarn, and O. Kiriwat, “Accuracy of Nugent's score and each Amsel's criteria in the diagnosis of bacterial vaginosis,” Journal of the Medical Association of Thailand, vol. 87, no. 11, pp. 1270–1274, 2004.
[6]
E. D. Hapsari, M. Hayashi, and H. Matsuo, “Clinical characteristics of vaginal discharge in bacterial vaginosis diagnosed by Nugent's criteria,” Clinical and Experimental Obstetrics and Gynecology, vol. 33, no. 1, pp. 5–9, 2006.
J. D. Sobel and P. Hay, “Diagnostic techniques for bacterial vaginosis and vulvovaginal candidiasis requirement for a simple differential test,” Expert Opinion on Medical Diagnostics, vol. 4, no. 4, pp. 333–341, 2010.
[9]
V. K. Hogan, J. F. Culhane, J. Hitti, V. A. Rauh, K. F. McCollum, and K. J. Agnew, “Relative performance of three methods for diagnosing bacterial vaginosis during pregnancy,” Maternal and Child Health Journal, vol. 11, no. 6, pp. 532–539, 2007.
[10]
N. C. Kampan, S. S. Suffian, N. S. Ithnin, M. Muhammad, S. Z. S. Zakaria, and M. A. Jamil, “Evaluation of BV blue test kit for the diagnosis of bacterial vaginosis,” Sexual and Reproductive Healthcare, vol. 2, no. 1, pp. 1–5, 2011.
[11]
H. Wolrath, U. Forsum, P. G. Larsson, and H. Borén, “Analysis of bacterial vaginosis-related amines in vaginal fluid by gas chromatography and mass spectrometry,” Journal of Clinical Microbiology, vol. 39, no. 11, pp. 4026–4031, 2001.
[12]
Z. Karpas, W. Chaim, R. Gdalevsky, B. Tilman, and A. Lorber, “Novel application for ion mobility spectrometry: diagnosing vaginal infections through measurement of biogenic amines,” Analytica Chimica Acta, vol. 474, no. 1-2, pp. 115–123, 2002.
[13]
W. Chaim, Z. Karpas, and A. Lorber, “New technology for diagnosis of bacterial vaginosis,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 111, no. 1, pp. 83–87, 2003.
[14]
G. A. Eiceman and Z. Karpas, Ion Mobility Spectrometry—Second Edition, CRC Press, Boca Raton, Fla, USA, 2005.
[15]
S. G. Lias, J. F. Liebman, and R. D. Levin, “Evaluated gas phase basicities and proton affinities of molecules; heats of formation of protonated molecules,” Journal of Physical and Chemical Reference Data, vol. 13, pp. 695–808, 1984.
[16]
G. M. Bota and P. B. Harrington, “Direct detection of trimethylamine in meat food products using ion mobility spectrometry,” Talanta, vol. 68, no. 3, pp. 629–635, 2006.
[17]
Z. Karpas, B. Tilman, R. Gdalevsky, and A. Lorber, “Determination of volatile biogenic amines in muscle food products by ion mobility spectrometry,” Analytica Chimica Acta, vol. 463, no. 2, pp. 155–163, 2002.
[18]
Z. Hashemian, A. Mardihallaj, and T. Khayamian, “Analysis of biogenic amines using corona discharge ion mobility spectrometry,” Talanta, vol. 81, no. 3, pp. 1081–1087, 2010.
[19]
M. A. Awan, I. Fleet, and C. L.P. Thomas, “Optimising cell temperature and dispersion field strength for the screening for putrescine and cadaverine with thermal desorption-gas chromatography-differential mobility spectrometry,” Analytica Chimica Acta, vol. 611, no. 2, pp. 226–232, 2008.
[20]
Z. Karpas, “Evidence of proton-induced cyclization of α,ω-diamines from ion mobility measurements,” International Journal of Mass Spectrometry and Ion Processes, vol. 93, no. 2, pp. 237–242, 1989.
[21]
G. A. Eiceman, E. G. Nazarov, and J. A. Stone, “Chemical standards in ion mobility spectrometry,” Analytica Chimica Acta, vol. 493, no. 2, pp. 185–194, 2003.
[22]
Z. Karpas, O. Litvin, G. Cohen, J. Mishin, E. Atweh, and A. Burlakov, “The reduced mobility of the biogenic amines: trimethylamine, putrescine, cadaverine, spermidine and spermine,” International Journal for Ion Mobility Spectrometry, vol. 14, no. 1, pp. 3–6, 2011.
[23]
G. Barnard, G. Cohen, E. Atweh, and Z. Karpas, “Measurement of biogenic amines in biological fluids by ion mobility spectrometry,” International Journal for Ion Mobility Spectrometry, vol. 14, pp. 207–211, 2011.